Date due: Monday March 26, 2007

1. Let $1 \rightarrow L \rightarrow J \rightarrow G \rightarrow 1$ be a short exact sequence of groups where L is an abelian subgroup of J and the mapping $L \rightarrow J$ is inclusion. In this situation, conjugation within J gives L the structure of a $\mathbb{Z} G$-module. Suppose that M is another $\mathbb{Z} G$ module and that $\theta: L \rightarrow M$ is a group homomorphism. Form the semidirect product $M \rtimes J$ and let $U=\{(-\theta(x), x) \mid x \in L\} \subseteq M \rtimes J$. (Here M is written additively and J acts on M via the homomorphism $J \rightarrow G$).
(i) Show that U is a normal subgroup of $M \rtimes J$ if and only if θ is a $\mathbb{Z} G$-module homomorphism.
(ii) Assuming that θ is a $\mathbb{Z} G$-module homomorphism, let $E=(M \rtimes J) / U$. Show that there is a commutative diagram of groups

and that the bottom row is exact.
2. Suppose that we have two commutative diagrams of group homomorphisms

where $i=1,2$, the maps labeled without the suffix i are the same in both diagrams, L and M are abelian and the two rows are group extensions (i.e. short exact sequences of groups). Show that the two bottom extensions are equivalent.
3. Given a free presentation $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ of a group G we have constructed a short exact sequence of $\mathbb{Z} G$-modules $0 \rightarrow R / R^{\prime} \rightarrow \mathbb{Z} G^{d(F)} \rightarrow I G \rightarrow 0$ where $d(F)$ is the rank of the free group F. By using this sequence, give a proof of the rank formula $d(R)=1+|G|(d(F)-1)$ when G is finite. [Assume that R is a free group - subgroups of free groups are free.]
4. ($\mathrm{D} \& \mathrm{~F} 17.3,4)$ Let V be the Klein 4 -group and let $G=\operatorname{Aut}(V) \cong S_{3}$ act on V in the natural fashion. Prove that $H^{1}(G, V)=0$. [Show that in the semidirect product $E=V \rtimes G, G$ is the normalizer of a Sylow 3-subgroup of E. Apply Sylow's Theorem to show all complements to V in E are conjugate.]
5. Let $1 \rightarrow M \xrightarrow{i} E \xrightarrow{p} G \rightarrow 1$ be a group extension in which M is abelian, and let $s: G \rightarrow E$ be a section for p, that is, a mapping which satisfies $p s=1_{G}$. Thus each element of E can be written in the form $i(m) \cdot s(x)$ with m and x uniquely determined. The multiplication in E determines a function $f: G \times G \rightarrow M$ by

$$
s(x) \cdot s\left(x^{\prime}\right)=i f\left(x, x^{\prime}\right) \cdot s\left(x x^{\prime}\right), \quad x, x^{\prime} \in G .
$$

(i) Show that associativity of multiplication in E implies

$$
x f(y, z)-f(x y, z)+f(x, y z)-f(x, y)=0, \quad \text { for all } x, y, z \in G .
$$

A function f satisfying this condition is called a factor set.
(ii) Show that factor sets form a group under $\left(f_{1}+f_{2}\right)\left(x, x^{\prime}\right)=f_{1}\left(x, x^{\prime}\right)+f_{2}\left(x, x^{\prime}\right)$.
(iii) Show that if $g: G \rightarrow M$ is any function then the function which sends (x, y) to $g(x y)-g(x)-x g(y)$ is a factor set.
(iv) Show that if $s, s^{\prime}: G \rightarrow E$ are two sections and f, f^{\prime} the corresponding factor sets, then there is a function $g: G \rightarrow M$ with $f^{\prime}(x, y)=f(x, y)+g(x y)-g(x)-x g(y)$. [In fact the quotient of the group of factor sets by the factor sets of the form g is isomorphic to $H^{2}(G, M)$ and we have gone some way towards showing from this point of view that this group bijects with equivalence classes of extensions.]
6. Let M be a normal subgroup of a group E, write $G=E / M$ and suppose that M is generated as a normal subgroup of E by elements $m_{1}, m_{2}, \ldots, m_{s}$.
(i) Show that $m_{1} M^{\prime}, \ldots, m_{s} M^{\prime}$ generate M / M^{\prime} as a $\mathbb{Z} G$-module.
(ii) Show that $m_{1}-1, \ldots, m_{s}-1$ generate $\mathbb{Z} E \cdot I M=\mathbb{Z} E \cdot I M \cdot \mathbb{Z} E$ as a 2-sided ideal of $\mathbb{Z} E$.

