1. Let $G:=\langle x\rangle$ be cyclic of order 15 . Find the order of the element x^{6} in G
2. Find the remainder of 9^{1573} when divided by 11 .
3. Let G be a group of order 36. If G has an element $a \in G$ such that $a^{12} \neq 1$ and $a^{18} \neq 1$, show that G is cyclic.
4. Show that the mapping $G \rightarrow G$ specified by $x \rightarrow x^{-1}$ is a group homomorphism if and only if G is abelian.
5. Let $C_{7}=\langle x\rangle, C_{6}=\langle y\rangle, C_{2}=\langle z\rangle$ be cyclic groups generated by elements x, y, z of orders 7,6 and 2 respectively.
(a) Is $\phi: C_{6} \rightarrow C_{2}$ given by $\phi(y)=z$ a homomorphism?
(b) Is $\phi: C_{7} \rightarrow C_{2}$ given by $\phi(x)=z$ a homomorphism?
6. (a) Find all possible homomorphisms from \mathbb{Z} to \mathbb{Z}.
(b) Find all possible homomorphisms from \mathbb{Z} onto \mathbb{Z}.
7. The quaternion group of order 8 is the set

$$
Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}
$$

with multiplication given by the rules

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1, \\
i j=k, \quad j k=i, \quad k i=j, \quad j i=-k, \quad k j=-i, \quad i k=-j, \\
(-1) x=x(-1)=-x, \quad 1 x=x 1=x
\end{gathered}
$$

for all x (with the understanding that $-(-x)=x$). Write out a list of the orders of the elements of Q_{8}. Make a complete list of all the subgroups of Q_{8} and determine which of them are normal. Show that the factor group $Q_{8} /\{1,-1\}$ is isomorphic to $C_{2} \times C_{2}$.
8. Let $G:=C_{15}=\langle x\rangle$ be cyclic of order 15. Find the order of the factor group $Q:=$ $G /\left\langle x^{6}\right\rangle$. Find the order of the element $x^{3}\left\langle x^{6}\right\rangle$ in Q. Find the order of the element $x^{2}\left\langle x^{6}\right\rangle$ in Q.
9. (page 29, no. 7) Give an example of a vector space V with endomorphisms θ and ϕ such that $V=\operatorname{Im} \theta \oplus \operatorname{Ker} \theta$, but $V \neq \operatorname{Im} \phi \oplus \operatorname{Ker} \phi$.

Some extra questions - do not hand in!

10. Let G be a group of order 15 . Show that G contains an element of order 3 .
11. Let H be a subgroup of a group G. Show that the map $a \mapsto a^{-1}$ determines a bijective map between the left cosets of H and the right cosets of H.
12. Let H be a subgroup of a group G and let $g \in G$ be any element. Show that $g^{-1} H g$ is a subgroup of G which is isomorphic to H.
13. Determine whether or not the indicated map is a homomorphism: $\phi: \mathbb{R} \rightarrow G L(2, \mathbb{R})$ specified by $\phi(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ where \mathbb{R} is a group under + and $G L(2, \mathbb{R})$ is the group of 2×2 invertible matrices with real entries, under multiplication of matrices.
14. Let $G:=\mathbb{Z} / 12 \mathbb{Z}$ and write $\bar{n}=n+12 \mathbb{Z} \in G$ for each integer n. Find the order of the quotient group $G /\langle\overline{8}\rangle$. Find the orders of the elements $\overline{2}+\langle\overline{8}\rangle$ and $\overline{3}+\langle\overline{8}\rangle$ in the quotient group $G /\langle\overline{8}\rangle$
15. (page 29, no. 5) (a) Let U_{1}, U_{2} and U_{3} be subspaces of a vector space V, with $V=U_{1}+U_{2}+U_{3}$. Show that

$$
V=U_{1} \oplus U_{2} \oplus U_{3} \Leftrightarrow U_{1} \cap\left(U_{2}+U_{3}\right)=U_{2} \cap\left(U_{3}+U_{1}\right)=U_{3} \cap\left(U_{1}+U_{2}\right)=\{0\} .
$$

(b)Give an example of a vector space V with three subspaces U_{1}, U_{2} and U_{3} such that $V=U_{1}+U_{2}+U_{3}$ and $U_{1} \cap U_{2}=U_{1} \cap U_{3}=U_{2} \cap U_{3}=\{0\}$, but $V \neq U_{1} \oplus U_{2} \oplus U_{3}$.
16. (page 29, no. 9) Suppose that θ is an endomorphism of the vector space V and $\theta^{2}=1_{V}$. Show that $V=U \oplus W$, where $U=\{v \in V: v \theta=v\}, W=\{v \in V: v \theta=-v\}$. Deduce that V has a basis \mathcal{B} such that $[\theta]_{\mathcal{B}}$ is diagonal, with all diagonal entries equal to +1 or -1 .
17. (page 29, no. 8) Let V be a vector space and let θ be an endomorphism of V. Show that θ is a projection if and only if there is a basis \mathcal{B} of V such that $[\theta]_{\mathcal{B}}$ is diagonal, with all diagonal entries equal to 1 or 0 .

