Date due: September 15, 2008
Hand in only the six starred questions.
Section 2.2 nos. 2.1, 2.7(1), 2.15*
Section 2.3 nos. $2.20^{*}, 2.23,2.24$ (Show also that if we remove the hypothesis that p be a prime divisor of k, and replace it simply by the hypothesis that p is a prime, then the result is no longer true), $2.25,2.26^{*}, 2.27,2.28^{*}$

Section 2.4 nos. 2.31, 2.32, 2.34, 2.37*, 2.38
A If x is an element of finite order n in a group G, prove that the elements

$$
1, x, x^{2}, \ldots, x^{n-1}
$$

are all distinct.
B If x is an element of infinite order in a group G, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct.

C* If $n=2 k$ is even and $n \geq 4$ show that $z=\rho^{k}$ is an element of order 2 which commutes with all elements of $D_{2 n}$. Show also that z is the only nonidentity element of $D_{2 n}$ which commutes with all elements of $D_{2 n}$.

D If n is odd and $n \geq 3$, show that the identity is the only element of $D_{2 n}$ which commutes with all elements of $D_{2 n}$.

E Let G be the group of symmetries in \mathbb{R}^{3} of a tetrahedron. Show that $|G|=24$.
F Let G be the group of symmetries in \mathbb{R}^{3} of a cube. Show that $|G|=48$.
G Let G be the group of v in \mathbb{R}^{3} of an icosahedron. Show that $|G|=120$.

