Date due: February 2, 2009. Hand in only the 5 starred questions.
Section 3.8, page $1963.86,3.88,3.92,3.93^{*}$
A (Review from last semester) (a) Let $p(x)=x^{3}+9 x+6 \in \mathbb{Q}[x]$ and let θ be a root of p in some extension field. Express $(1+\theta)^{-1}$ as a polynomial in θ.
(b) Same question with $p(x)=x^{3}-2 x-2$.

B Prove directly that the map $a+b \sqrt{2} \mapsto a-b \sqrt{2}$ is an isomorphism of $\mathbb{Q}(\sqrt{2})$ with itself.

C Determine the degree over \mathbb{Q} of $2+\sqrt{3}$ and of $1+\sqrt[3]{2}+\sqrt[3]{4}$.
D* Prove that $\mathbb{Q}(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. Conclude that $[\mathbb{Q}(\sqrt{3}+\sqrt{5}): \mathbb{Q}]=4$. Find an irreducible polynomial satisfied by $\sqrt{3}+\sqrt{5}$, giving justification that your polynomial is irreducible.

E Let F be a field of characteristic $\neq 2$. Let D_{1} and D_{2} be elements of F, neither of which is a square in F. Prove that $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F if $D_{1} D_{2}$ is not a square in F and is of degree 2 over F otherwise. When $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F the field is called a biquadratic extension of F.
F Let F be a field of characteristic $\neq 2$. Let a, b be elements of the field F with b not a square in F. Prove that a necessary and sufficient condition for $\sqrt{a+\sqrt{b}}=\sqrt{m}+\sqrt{n}$ for some m and n in F is that $a^{2}-b$ is a square in F. Use this to determine when the field $\mathbb{Q}(\sqrt{a+\sqrt{b}})$ with $a, b \in \mathbb{Q}$ is biquadratic over \mathbb{Q}.

G* Let K be an extension of F of degree n.
(a) For any $\alpha \in K$ prove that α acting by left multiplication of K is an F-linear transformation of K.
(b) Prove that K is isomorphic to a subfield of the ring of $n \times n$ matrices of F, so that ring of $n \times n$ matrices over F contains an isomorphic copy of every extension of F of degree $\leq n$.
H Let $K=\mathbb{Q}(\sqrt{D})$ for some squarefree integer D. Let $\alpha=a+b \sqrt{D}$ be an element of K. Use the basis $1, \sqrt{D}$ for K as a vector space over \mathbb{Q} and show that the matrix of the linear transformation 'multiplication by α ' on K considered in the last exercise has the matrix $\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right)$. Prove directly that the map $a+b \sqrt{D} \mapsto\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right)$ is an isomorphism of the field K with a subfield of the ring of 2×2 matrices with coefficients in \mathbb{Q}.
I* Determine the splitting field over \mathbb{Q}, together with its degree over \mathbb{Q} for each of (a) $x^{4}-2$, (b) $x^{4}+2$, (c) $x^{4}+x^{2}+1$ and (d) $x^{6}-4$.

J* (Fall 2000, qn. 5)(12\%) Let $K \supseteq k$ be a field extension and $f \in k[X]$ an irreducible polynomial of degree relatively prime to the degree of the field extension $[K: k]$. Show that f is irreducible in $K[X]$.

