Math 8202
Homework 11
PJW
Date due: Wednesday April 29, 2009. Hand in only the 5 starred questions.
Homework 10 is in fact due on Wednesday April 22. We will hold Quiz 5 (on the material of HWs 9 and 10) on April 27 and Quiz 6 on May 4. This is because the Algebra preliminary exam is on April 20.

Section 9.1 page 663 no. 9.2 (you may need to read what a (p)-primary module is one such that every element is annihilated by a power of p), 9.3

Section 9.4 page 694 9.47, 9.48
OO* Two linear transformations $S, T: V \rightarrow V$ where V is a vector space are said to be similar if there is an invertible linear transformation $A: V \rightarrow V$ so that $T=A S A^{-1}$. Prove that similar linear transformations have the same characteristic polynomial and the same minimal polynomial.

PP* Prove that two 2×2 matrices over a field F which are not scalar matrices are similar if and only if they have the same characteristic polynomial.

QQ Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

RR* Find the rational canonical forms of

$$
\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
c & 0 & -1 \\
0 & c & 1 \\
-1 & 1 & c
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
42 & 465 & 15 & -30 \\
-420 & -463 & -15 & 30 \\
840 & 930 & 32 & -60 \\
-140 & -155 & -5 & 12
\end{array}\right)
$$

SS Find all similarity classes of 6×6 matrices over \mathbb{C} with characteristic polynomial $\left(x^{4}-1\right)\left(x^{2}-1\right)$.

TT Find all similarity classes of 3×3 matrices A over \mathbb{Q}, and also over \mathbb{F}_{2} satisfying $A^{6}=I$. Do the same for 4×4 matrices B satisfying $B^{20}=I$.

UU* Find all similarity classes of 6×6 matrices over \mathbb{Q} for which the minimal polynomial is $(x+2)^{2}(x-1)$.

VV* Determine up to similarity all 2×2 matrices with entries in \mathbb{Q} of precise order 4 (multiplicatively, of course). Do the same if the matrix has entries from \mathbb{C}.

WW Determine representatives for the conjugacy classes for $G L_{3}\left(\mathbb{F}_{2}\right)$.
XX Let V be a finite dimensional vector space over \mathbb{Q} and suppose T is a nonsingular linear transformation of V such that $T^{-1}=T^{2}+T$. Prove that the dimension of V is divisible by 3. If the dimension of V is precisely 3 prove that all such transformations T are similar.

