Homework 4

PJW

Date due: February 23, 2009. There will be a quiz on this date. Hand in only the 5 starred questions.

Section 4.2, page 245 4.17*, 4.18, 4.20

- V^{*} (Spring 2002, qn 5) Let F be a field of characteristic 0. Let $f(x) = x^n a \in F[x]$, and assume that f does not have a root in F. (But it is *not* assumed that f(x) is irreducible in F[x].) Finally, let E be a splitting field of f(x).
 - (a) (6%) Show that if F contains a primitive n^{th} root of unity, then the Galois group $G_{E/F}$ is isomorphic to a subgroup of the additive group $\mathbb{Z}/n\mathbb{Z}$.
 - (b) (6%) Show that if F contains a primitive n^{th} root of unity, then all of the irreducible factors of f(x) in F[x] are of the same degree.
 - (c) (6%) Show that if F contains a primitive n^{th} root of unity and g(x) is an irreducible factor of f(x) in F[x], then $g(x) = x^k b$, where k is a divisor of n, b is an element of F, and $b^{n/k} = a$.
 - (d) (6%) Now let $f(x) = x^6 + a$ in $\mathbb{R}[x]$, where a > 0. Determine whether each of the following two statements is true or false:
 - (i) All of the irreducible factors of f(x) in $\mathbb{R}[x]$ have the same degree.
 - (ii) If g(x) is an irreducible factor of f(x) in $\mathbb{R}[x]$ then $g(x) = x^k b$, where k is a divisor of 6 and $b \in \mathbb{R}$ satisfies $b^{6/k} = a$.
- (Z) Let k be a field.

Math 8202

- (a) Show that the mapping $\phi : k[t] \to k[t]$ defined by $\phi(f(t)) = f(at+b)$ for fixed $a, b \in k, a \neq 0$ is an automorphism of k[t] which is the identity on k.
- (b) Conversely, let ϕ be an automorphism of k[t] which is the identity on k. Prove that there exist $a, b \in k$ with $a \neq 0$ such that $\phi(f(t)) = f(at + b)$ as in (a).
- (AAA*) Prove that the automorphisms of the rational function field k(t) which fix k are precisely the fractional linear transformations determined by $t \mapsto \frac{at+b}{ct+d}$ for $a, b, c, d \in k$, $ad - bc \neq 0$ (so $f(t) \in k(t)$ maps to $f(\frac{at+b}{ct+d})$).
- (BBB^{*}) Determine the fixed field of the automorphism $t \mapsto t+1$ of k(t).
- (CCC^{*}) Let K be an extension of the field F. Let $\phi : K \to K'$ be an isomorphism of K with a field K' which maps F to the subfield F' of K'. Prove that the map $\sigma \mapsto \phi \sigma \phi^{-1}$ defines a group isomorphism $\operatorname{Aut}(K/F) \to \operatorname{Aut}(K'/F')$.