
Math 8211 Homework 5 PJW

Date due: Monday December 3, 2012. In class on Wednesday December 5 we

will grade your answers, so it is important to be present on that day, with your

homework.

Rotman 7.2, 7.7 (page 417), 7.11(i), 7.14, 7.16, 7.17 (page 435), 7.20 (page 436), 7.22 (page
437) .
Questions 1 and 2 below.

1. Let 0 → A → B → C → 0 be a short exact sequence of R-modules. Show that in the
long exact sequence

0 → Hom(C, A) → Hom(C, B) → Hom(C, C)
δ
→Ext1(C, A) → · · ·

the image of 1C under the connecting homomorphism δ is the Ext class of the exten-
sion.

2. Let R = k[x1, . . . , xn] be a polynomial ring in n variables over a field k. Let us regard
k as the unital R-module on which all of x1, . . . , xn act as 0.
(a) Show that dimk Ext1R(k, k) = n
(b) Let 0 → kn

→ E → k → 0 be an extension of R-modules whose Ext class, when
written in terms of components with respect to the direct sum decomposition
Ext1R(k, kn) ∼=

⊕n

i=1
Ext1R(k, k), has components which are a basis of Ext1R(k, k).

Show that kn is the unique maximal submodule of E and that E is indecompos-
able as an R-module (i.e. E cannot be expressed as a direct sum of two non-zero
submodules). Show that E is isomorphic to R/(x1, . . . , xn)2.

(c) Show that any extension of the form 0 → kn+1
→ E′

→ k → 0 must have a
module E′ in the middle which decomposes as an R-module.
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This construction can be iterated, for ker D1 is finitely generated, and the
proof is completed by induction. (We remark that we have, in fact, constructed
a free resolution of A, each of whose terms is finitely generated.) •

Theorem 7.20. If R is a commutative noetherian ring, and if A and B
are finitely generated R-modules, then TorR

n (A, B) is a finitely generated R-
module for all n ≥ 0.

Remark. There is an analogous result for Ext (see Theorem 7.36). !
Proof. Note that Tor is an R-module because R is commutative. We prove
that Torn is finitely generated by induction on n ≥ 0. The base step holds, for
A⊗R B is finitely generated, by Exercise 3.13 on page 115(i). If n ≥ 0, choose

a projective resolution · · · → P1
d1−→ P0 → A → 0 as in Lemma 7.19. Since

Pn ⊗R B is finitely generated, so are ker(dn ⊗ 1B) (by Proposition 3.18) and
its quotient TorR

n (A, B). •

Exercises

*7.1 If R is right hereditary, prove that TorR
j (A, B) = {0} for all j ≥ 2

and for all right R-modules A and B.
Hint. Every submodule of a projective module is projective.

7.2 If 0 → A → B → C → 0 is an exact sequence of right R-modules
with both A and C flat, prove that B is flat.

*7.3 If F is flat and π : P → F is a surjection with P flat, prove that
ker π is flat.

7.4 If A, B are finite abelian groups, prove that TorZ1 (A, B) ∼= A ⊗Z B.
7.5 Let R be a domain with Frac(R) = Q and K = Q/R. Prove that

the right derived functors of t (the torsion submodule functor) are

R0t = t, R1t = K ⊗R ", Rnt = 0 for all n ≥ 2.

7.6 Let k be a field, let R = k[x, y], and let I be the ideal (x, y).
(i) Prove that x ⊗ y − y ⊗ x ∈ I ⊗R I is nonzero.

Hint. Consider (I/I 2) ⊗ (I/I 2).

(ii) Prove that x(x ⊗ y − y ⊗ x) = 0, and conclude that I ⊗R I
is not torsion-free.

7.7 Prove that the functor T = TorZ1 (G, ") is left exact for every abelian
group G, and compute its right derived functors LnT .
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Exercises

*7.8 (i) Let G be a p-primary abelian group, where p is prime. If
(m, p) = 1, prove that x !→ mx is an automorphism of G.

(ii) If p is an odd prime and G = 〈g〉 is a cyclic group of order
p2, prove that ϕ : x !→ 2x is the unique automorphism with
ϕ(pg) = 2pg.

*7.9 Prove that any two split extensions of modules A by C are equiva-
lent.

7.10 Prove that if A is an abelian group with n A = A for some positive
integer n, then every extension 0 → A → E → In → 0 splits.

*7.11 (i) Find an abelian group B for which Ext1Z(Q, B) %= {0}.
(ii) Prove that Q ⊗Z Ext1Z(Q, B) %= {0} for the group B in (i).
(iii) Prove that Proposition 7.39 may be false when A is not

finitely generated, even when R = Z.
*7.12 Let E be a left R-module. Prove that E is injective if and only if

Ext1R(A, E) = {0} for every left R-module A.
*7.13 (i) Prove that the covariant functor E = Ext1Z(G, !) is right

exact for every abelian group G, and compute its left de-
rived functors Ln E .

(ii) Prove that the contravariant functor F = Ext1Z(!, G) is
right exact for every abelian group G, and compute its left
derived functors Ln F . (See the footnote on page 370.)

7.14 (i) If A is an abelian group with m A = A for some nonzero
m ∈ Z, prove that every exact sequence 0 → A → G →
Im → 0 splits. Conclude that m Ext1Z(A, B) = {0} =
m Ext1Z(B, A).

(ii) If A and C are abelian groups with m A = {0} = nC , where
(m, n) = 1, prove that every extension of A by C splits.

7.15 (i) For any ring R, prove that a left R-module B is injective if
and only if Ext1R(R/I, B) = {0} for every left ideal I .
Hint. Use the Baer criterion.

(ii) If D is an abelian group and Ext1Z(Q/Z, D) = {0}, prove
that D is divisible. The converse is true because divisible
abelian groups are injective. Does this hold if we replace Z
by a domain R and Q/Z by Frac(R)/R?

7.16 Let G be an abelian group G. Prove that G is free abelian if and
only if Ext1Z(G, F) = {0} for every free abelian group F .

*7.17 Let A be a torsion abelian group and let S1 be the circle group.
Prove that Ext1Z(A, Z) ∼= HomZ(A, S1).
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*7.18 An abelian group W is a Whitehead group if Ext1Z(W, Z) = {0}.3
(i) Prove that every subgroup of a Whitehead group is a White-

head group.
(ii) Prove that Ext1Z(A, Z) ∼= HomZ(A, S1) if A is a torsion

group and S1 is the circle group. Prove that if A "= {0} is
torsion, then A is not a Whitehead group; conclude further
that every Whitehead group is torsion-free.
Hint. Use Exercise 7.17.

(iii) Let A be a torsion-free abelian group of rank 1; i.e., A
is a subgroup of Q. Prove that A ∼= Z if and only if
HomZ(A, Z) "= {0}.

(iv) Let A be a torsion-free abelian group of rank 1. Prove that
if A is a Whitehead group, then A ∼= Z.
Hint. Use an exact sequence 0 → Z → A → T → 0,
where T is a torsion group whose p-primary component is
either cyclic or isomorphic to Prüfer’s group of type p∞.

(v) (K. Stein). Prove that every countable4 Whitehead group
is free abelian.
Hint. Use Exercise 3.4 on page 114, Pontrjagin’s Lemma:
if A is a countable torsion-free group and every subgroup of
A having finite rank is free abelian, then A is free abelian.

7.19 We have constructed the bijection ψ : e(C, A) → Ext1(C, A) us-
ing a projective resolution of C . Define a function ψ ′ : e(C, A) →
Ext1(C, A) using an injective resolution of A, and prove that ψ ′ is
a bijection.

7.20 Consider the diagram

ξ1 = 0 !! A1 !!

h
""

B1 !! C1 !!

k
""

0

ξ2 = 0 !! A2 !! B2 !! C2 !! 0.

Prove that there is a map β : B1 → B2 making the diagram com-
mute if and only if [hξ1] = [ξ2k].

7.21 (i) Prove, in e(C, A), that −[ξ ] = [(−1A)ξ ] = [ξ(−1C )].
(ii) Generalize (i) by replacing (−1A) and (−1C ) by µr for any

r in the center of R.
3 Dixmier proved that a locally compact abelian group A is path connected if and only

if A ∼= Rn ⊕ D̂, where D is a (discrete) Whitehead group and D̂ is its Pontrjagin dual.
4The question whether Ext1Z(G, Z) = {0} implies G is free abelian is known as White-

head’s problem. S. Shelah proved that it is undecidable whether uncountable Whitehead
groups must be free abelian (see Eklof, “Whitehead’s problem is undecidable,” Amer.
Math. Monthly 83 (1976), 775–788).
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7.22 Prove that [ξ ] = [0 → A
i−→ B → C → 0] ∈ e(C, A) has finite

order if and only if there are a nonzero m ∈ Z and a map s : B → A
with si = m · 1A.

*7.23 (i) Prove that e(C, !) : RMod → Ab is a covariant functor
if, for h : A → A′, we define h∗ : e(C, A) → e(C, A′) by
[ξ ] &→ [hξ ].

(ii) Prove that e(C, !) is naturally isomorphic to Ext1R(C, !).

7.24 Consider the extension χ = 0 → A′ i−→ A
p−→ A′′ → 0.

(i) Define D : HomR(C, A′′) → e(C, A′) by k &→ [χk], and
prove exactness of

Hom(C, A)
p∗−→ Hom(C, A′′)

D−→ e(C, A′)

i∗−→ e(C, A)
p∗−→ e(C, A′′).

(ii) Prove commutativity of

Hom(C, A′′)
D !!

∂ ""!!!!!!!!!!!
e(C, A′)

ψ

##

Ext1(C, A′),

where ∂ is the connecting homomorphism.
7.25 (i) Prove that e(!, A) : RMod → Ab is a contravariant func-

tor if, for k : C ′ → C , we define k∗ : e(C, A) → e(C ′, A)
by [ξ ] &→ [ξk].

(ii) Prove that e(!, A) is naturally isomorphic to Ext1R(!, A).

*7.26 Consider the extension X = 0 → C ′ i−→ C
p−→ C ′′ → 0.

(i) Define D′ : HomR(C ′, A) → e(C ′′, A) by h &→ [h X ], and
prove exactness of

Hom(C, A)
i∗−→ Hom(C ′, A)

D′
−→ e(C ′′, A)

p∗
−→ e(C, A)

i∗−→ e(C ′, A).

(ii) Prove commutativity of

Hom(C ′, A)
D′

!!

∂ ""!!!!!!!!!!!
e(C ′′, A)

ψ

##

Ext1(C ′′, A),

where ∂ ′ is the connecting homomorphism.


