Math 8212Homework 5PJWDate due: Wednesday May 1, 2013. In class on Friday May 3 we will grade
your answers, so it is important to be present on that day, with your homework.

Questions 8.1, 8.2 on page 63 of Matsumura.

In these questions p is a prime. We will write an element $a_{-s}p^{-s} + \cdots + a_{-1}p^{-1} + a_0 + a_1p + a_2p^2 + \cdots$ of the *p*-adic rationals \mathbb{Q}_p , where $0 \leq a_i \leq p - 1$, as a string $\cdots a_3a_2a_1a_0.a_{-1}\cdots a_{-s}$ with a point separating a_0 and a_{-1} .

1. Show that when p = 2 we have

$$-1 = \cdots \overline{1111}$$
 and
 $\frac{1}{3} = \cdots \overline{10101011}.$

What fraction does $\cdots \overline{11001101}$. represent? Show that a *p*-adic integer is a negative (rational) integer if and only if it is of the form $\overline{1}a_n \cdots a_3 a_2 a_1 a_0$.

- 2. Show that \mathbb{Q} is the subset of \mathbb{Q}_p consisting of strings $\overline{a_m \cdots a_n} \cdots a_3 a_2 a_1 a_0 . a_{-1} \cdots a_{-s}$ which eventually recur, and that the localization $\mathbb{Z}_{(p)}$ is the subset of \mathbb{Q}_p consisting of strings $\overline{a_m \cdots a_n} \cdots a_3 a_2 a_1 a_0$. which eventually recur to the left and do not continue to the right of the point.
- 3. Write out a proof that the *p*-adic integers (described as strings of numbers as above) is isomorphic to the inverse limit of the diagram

$$\cdots \to \mathbb{Z}/p^3\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$$

in which each of the homomorphisms is a ring homomorphism (and hence is surjective).

- 4. Let \mathcal{C} be a small category. Show that a sequence $F_1 \to F_2 \to F_3$ in the category Fun(\mathcal{C} , abgps) of functors from \mathcal{C} to abelian groups, with natural transformations as morphisms, is exact if and only if for all objects X in \mathcal{C} the sequence of abelian groups $F_1(X) \to F_2(X) \to F_3(X)$ is exact.
- 5. Write out a proof that if $\hat{M} = \varprojlim M/M_{\lambda}$ is the inverse limit, where the M_{λ} form a directed system as on page 55 of the book, then the topology on \hat{M} given as the subspace topology of the product topology coincides with the linear topology given by the submodules M_{λ}^* which are the kernels of the projection maps $\hat{M} \to M/M_{\lambda}$.
- 6. Prove that the completion $\hat{M} = \varprojlim M/M_{\lambda}$ of the last question is itself complete with respect to the linear topology given by the submodules M_{λ}^* .

(3) The completion \hat{A} of A is faithfully flat over A; hence $A \subset \hat{A}$, and $I\hat{A} \cap A = I$ for any ideal I of A.

(4) \hat{A} is again a Noetherian local ring, with maximal ideal m \hat{A} , and it has the same residue class field as A; moreover, $\hat{A}/m^n\hat{A} = A/m^n$ for all n > 0.

(5) If A is a complete local ring, then for any ideal $I \neq A$, A/I is again a complete local ring.

Remark 1. Even if A is complete, the localisation A_p of A at a prime p may not be.

Remark 2. An Artinian local ring (A, m) is complete; in fact, it is clear from the proof of Theorem 3.2 that there exists a v such that $m^v = 0$, so that $\hat{A} = \lim_{n \to \infty} A/m^n = A$.

Exercises to §8. Prove the following propositions.

- 8.1. If A is a Noetherian ring, I and J are ideals of A, and A is complete both for the I-adic and J-adic topologies, then A is also complete for the (I + J)-adic topology.
- 8.2. Let A be a Noetherian ring, and $I \supset J$ ideals of A; if A is I-adically complete, it is also J-adically complete.
- 8.3. Let A be a Zariski ring and \hat{A} its completion. If $a \subset A$ is an ideal such that $a\hat{A}$ is principal, then a is principal.
- 8.4. According to Theorem 8.12, if $y \in \bigcap_{v} I^{v}$ then

$$y \in \sum_{i=1}^{n} (X_i - a_i) A \llbracket X_1, \dots, X_n \rrbracket.$$

Verify this directly in the special case I = eA, where $e^2 = e$.

- 8.5. Let A be a Noetherian ring and I a proper ideal of A; consider the multiplicative set S = 1 + I as in §4, Example 3. Then A_S is a Zariski ring with ideal of definition IA_S , and its completion coincides with the I-adic completion of A.
- 8.6. If A is I-adically complete then B = A[[X]] is (IB + XB)-adically complete.
- 8.7. Let (A, \mathfrak{m}) be a complete Noetherian local ring, and $\mathfrak{a}_1 \supset \mathfrak{a}_2 \supset \cdots$ a chain of ideals of A for which $\bigcap_{\nu} \mathfrak{a}_{\nu} = (0)$; then for each n there exists $\nu(n)$ for which $\mathfrak{a}_{\nu(n)} \subset \mathfrak{m}^n$. In other words, the linear topology defined by $\{\mathfrak{a}_{\nu}\}_{\nu=1,2,\ldots}$ is stronger than or equal to the m-adic topology (Chevalley's theorem).
- 8.8. Let A be a Noetherian ring, a_1, \ldots, a_r , ideals of A; if M is a finite A-module and $N \subset M$ a submodule, then there exists c > 0 such that

 $n_1 \ge c, \ldots, n_r \ge c \Rightarrow \mathfrak{a}_1^{n_1} \ldots \mathfrak{a}_r^{n_r} M \cap N = \mathfrak{a}_1^{n_1 - c} \ldots \mathfrak{a}_r^{n_r - c}(\mathfrak{a}_1^c \ldots \mathfrak{a}_r^c M \cap N).$

- 8.9. Let A be a Noetherian ring and $P \in Ass(A)$. Then there is an integer c > 0 such that $P \in Ass(A/I)$ for every ideal $I \subset P^c$ (hint: localise at P).
- 8.10. Show by example that the conclusion of Ex. 8.7. does not necessarily hold if A is not complete.