Date due: October 19, 2015.

1. Use GAP to show that

$$
\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(b c)^{3}=(c a)^{5}=1\right\rangle \cong A_{5} \times C_{2} .
$$

2. The generalized quaternion group of order 2^{n} has a presentation

$$
\left\langle a, b \mid a^{2^{n-1}}=1, b^{2}=a^{2^{n-2}}, b a b^{-1}=a^{-1}\right\rangle .
$$

Use GAP to investigate the generalized quaternion group of order 32. Get a list of the orders of the elements. Compute the derived subgroup and the center. Draw a picture of the lattice of subgroups of this group. What is the minimum degree of a faithful permutation representation of this group?
3. (a) Show that every homomorphism of G-sets $\Omega \rightarrow \Psi$ where Ψ is transitive is necessarily surjective. (Hence when Ψ is finite every G-set mapping $\Psi \rightarrow \Psi$ is a bijection.) (b) Let H and K be subgroups of G. Show that every homomorphism of G-sets $G / H \rightarrow G / K$ is a composite $G / H \rightarrow G / J \rightarrow G / K$ where $H \leq J, J$ is conjugate to K, and the mapping $G / H \rightarrow G / J$ is $x H \mapsto x J$.
4. (Question 11.4 from the handout) A group G is injective \Leftrightarrow whenever we are given a subgroup A of a group B and a homomorphism $f: A \rightarrow G$ there exists a homomorphism $g: B \rightarrow G$ so that the restriction of g to A is f. Prove that injective groups have order 1. [Hint (D.L. Johnson): let A be free on $\{a, b\}$ and let $B=A \rtimes\langle c\rangle$ where c has order 2 and $c a c^{-1}=b, c b c^{-1}=a$.]
5. (Question 11.5 from the handout) Let $X=\left\{x_{k} \mid k \in K\right\}$ and let $Y \subseteq X$. If F is free on X and H is the normal subgroup generated by Y, show that F / H is free.
6. (Question 11.6 from the handout) Show that a free group F on $\{x, y\}$ has an automorphism f with $f(f(a))=a$ for all $a \in F$ and with the further property that $f(a)=a$ if and only if $a=1$.

Extra Questions: do not hand in

7. Use GAP to show that $S L(2,5)$ has a normal subgroup of order 2 such that the quotient is isomorphic to A_{5}. Show that $S L(2,5)$ has no subgroup isomorphic to A_{5}. Identify the Sylow 2 -subgroups of $S L(2,5)$.
8. Use GAP to investigate the groups

$$
\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(b c)^{3}=(a c)^{4}=1\right\rangle
$$

and

$$
\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{2}=(b c)^{3}=(a c)^{3}=1\right\rangle
$$

In each case identify the quotient by the center $G / Z(G)$ and determine whether or not $G=Z(G) \times H$ for some subgroup H.
9. Let F be a free group of rank 2 . Show that it is possible to find a set of three elements which generate F, no two of which generate F.
10. I can't see how to do the following; can you? I suppose it is true.

Let F be a free group of rank n and let X be a subset of n which generates F. Show that X generates F freely.

