Date due: Monday March 7, 2016. We will discuss these questions on Wednesday 3/9/2016

1. Let V be the Klein 4-group and let $G=\operatorname{Aut}(V) \cong S_{3}$ act on V in the natural fashion. Prove that $H^{1}(G, V)=0$. [Show that in the semidirect product $E=V \rtimes G, G$ is the normalizer of a Sylow 3-subgroup of E. Apply Sylow's Theorem to show all complements to V in E are conjugate.]
2. Let $1 \rightarrow M \xrightarrow{i} E \xrightarrow{p} G \rightarrow 1$ be a group extension in which M is abelian, and let $s: G \rightarrow E$ be a section for p, that is, a mapping which satisfies $p s=1_{G}$. Thus each element of E can be written in the form $i(m) \cdot s(x)$ with m and x uniquely determined. The multiplication in E determines a function $f: G \times G \rightarrow M$ by

$$
s(x) \cdot s\left(x^{\prime}\right)=i f\left(x, x^{\prime}\right) \cdot s\left(x x^{\prime}\right), \quad x, x^{\prime} \in G .
$$

(i) Show that associativity of multiplication in E implies

$$
x f(y, z)-f(x y, z)+f(x, y z)-f(x, y)=0, \quad \text { for all } x, y, z \in G .
$$

A function f satisfying this condition is called a factor set.
(ii) Show that factor sets form a group under $\left(f_{1}+f_{2}\right)\left(x, x^{\prime}\right)=f_{1}\left(x, x^{\prime}\right)+f_{2}\left(x, x^{\prime}\right)$.
(iii) Show that if $g: G \rightarrow M$ is any function then the function which sends (x, y) to $g(x y)-g(x)-x g(y)$ is a factor set.
(iv) Show that if $s, s^{\prime}: G \rightarrow E$ are two sections and f, f^{\prime} the corresponding factor sets, then there is a function $g: G \rightarrow M$ with $f^{\prime}(x, y)=f(x, y)+g(x y)-g(x)-x g(y)$. [In fact the quotient of the group of factor sets by the factor sets of the form g is isomorphic to $H^{2}(G, M)$ and we have gone some way towards showing from this point of view that this group bijects with equivalence classes of extensions.]
3. (a) Let G be a group with a presentation $G=\left\langle g_{1}, \ldots, g_{d} \mid a_{1}, \ldots, a_{r}\right\rangle$ and suppose that the abelianisation G / G^{\prime} is the direct sum of a free abelian group of rank s and a finite group. Show that $H_{2}(G, \mathbb{Z})$ can be generated by no more than $r-d+s$ elements. (b) Show that the braid group on three strings $B_{3}=\left\langle g_{1}, g_{2} \mid g_{1} g_{2} g_{1}=g_{2} g_{1} g_{2}\right\rangle$ has trivial Schur multiplier. Show that $H_{2}\left(\mathbb{Z}^{n}, \mathbb{Z}\right)$ can be generated by at most $\binom{n}{2}$ elements.
4. By considering the short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} /|G| \mathbb{Z} \rightarrow 0$ show that if G is finite and $H_{2}(G, \mathbb{Z})=0$ then $H_{2}(G, \mathbb{Z} /|G| \mathbb{Z}) \cong G / G^{\prime}$. (This suggests that it does not work to compute the Schur multiplier using a finite coefficient module.)

Questions on the Free Differential Calculus of R.H. Fox

5. Suppose that G is generated by elements g_{1}, \ldots, g_{n}, that is $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, and let $d: G \rightarrow M$ be a derivation. Show that for each element $g \in G$ there exist elements $\lambda_{i} \in \mathbb{Z} G$ (which will depend on g) such that $d(g)=\sum \lambda_{i} d\left(g_{i}\right)$. Conclude that the \mathbb{Z}-linear span of $d(G)$ is the $\mathbb{Z} G$-submodule of M generated by $d\left(g_{1}\right), \ldots, d\left(g_{n}\right)$.
6. Apply the last question in the case of the derivation $d: G \rightarrow \mathbb{Z} G$ given by $d(g)=$ $g-1$, so that this defines $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Z} G$. Show that now for any other derivation $e: G \rightarrow N$ we also have $e(g)=\sum \lambda_{i} e\left(g_{i}\right)$, this equation holding in N.
7. Let F be the free group on generators g_{1}, \ldots, g_{n} and consider $d: F \rightarrow \mathbb{Z} F$ given by $d(g)=g-1$. Show that the elements λ_{i} considered in the last questions are now uniquely determined. We will denote the element $\lambda_{i} \in \mathbb{Z} F$ by $\frac{\partial g}{\partial g_{i}}$. Thus

$$
d(g)=\sum_{i} \frac{\partial g}{\partial g_{i}} d\left(g_{i}\right)
$$

Show that
(i) the mapping $\frac{\partial}{\partial g_{i}}: F \rightarrow \mathbb{Z} F$ is a derivation,
(ii) $\frac{\partial g_{j}}{\partial g_{i}}=\delta_{i j}$.

The properties (i) and (ii) in fact characterize $\frac{\partial}{\partial g_{i}}$. Demonstrate this by computing $\frac{\partial}{\partial x}\left(y x^{-1} y x^{2}\right)$.
[The approach presented here is the 'free differential calculus' of R.H. Fox, and one of its uses can be found described in the book on knot theory by R.H. Crowell and R.H. Fox.]
8. Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a presentation of G, so

$$
G=\left\langle g_{1} \ldots g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

where R is the normal subgroup of F generated by r_{1}, \ldots, r_{m}. Show that

$$
r_{j}-1=\sum_{i} \frac{\partial r_{j}}{\partial g_{i}}\left(g_{i}-1\right), \quad j=1, \ldots, m
$$

Deduce that in the start of the resolution

where the basis vectors of $\mathbb{Z} G^{m}$ are mapped to the generators $r_{j} R^{\prime}$ of R / R^{\prime}, the map α has matrix $\left(\frac{\partial r_{j}}{\partial g_{i}}\right)_{i, j}$.
Evaluate this matrix in the case of the group given by the presentation

$$
G=\left\langle x, y \mid x^{4}=1=y^{4}, x^{2}=y^{2}, y x y^{-1}=x^{3}\right\rangle
$$

[One might call this the Jacobian matrix. It appears in the definition of the Alexander polynomial of a knot.]

