Math 8300 Homework 3 PJW

We will discuss these questions on Friday May 5, 2017

These questions can all be done using technology presented in class. It would be possible to do some of them in a different way, perhaps by studying various texts. The point about these questions is that they reinforce what is done in class, and I prefer it if you use the methods I have taught.

1. (8 points) Give a proof of the following result by following the suggested steps.

THEOREM. Let $E\supset F$ be a field extension of finite degree and let A be an F-algebra. Let U and V be A-modules. Then

$$E \otimes_F \operatorname{Hom}_A(U, V) \cong \operatorname{Hom}_{E \otimes_F A}(E \otimes_F U, E \otimes_F V)$$

via an isomorphism $\lambda \otimes_F f \mapsto (\mu \otimes_F u \mapsto \lambda \mu \otimes_F f(u)).$

- (a) Verify that there is indeed a homomorphism as indicated.
- (b) Let x_1, \ldots, x_n be a basis for E as an F-vector space. Show that for any F-vector space M, each element of $E \otimes_F M$ can be written uniquely in the form $\sum_{i=1}^n x_i \otimes_F m_i$ with $m_i \in M$.
- (c) Show that if an element $\sum_{i=1}^{n} x_i \otimes f_i \in E \otimes_F \operatorname{Hom}_A(U, V)$ maps to 0 then $\sum_{i=1}^{n} x_i \otimes f_i(u) = 0$ for all $u \in U$. Deduce that the homomorphism is injective.
- (d) Show that the homomorphism is surjective as follows: given an $E \otimes_F A$ -module homomorphism $g: E \otimes_F U \to E \otimes_F V$, write $g(1 \otimes_F u) = \sum_{i=1}^n x_i \otimes f_i(u)$ for some elements $f_i(u) \in V$. Show that this defines A-module homomorphisms $f_i: U \to V$. Show that g is the image of $\sum_{i=1}^n x_i \otimes f_i$.
 - 2. (5 points) The antiautomorphism of $S_F(n,r)$ used in defining the dual of a representation of the Schur algebra was defined as sending an endomorphism of $E^{\otimes r}$ to its transpose with respect to the standard bilinear form on $E^{\otimes r}$. Compute the effect of this antiautomorphism on the basis elements $\xi_{\mathbf{i},\mathbf{j}}$ of $S_F(n,r)$ constructed as the duals of the monomial functions $c_{\mathbf{i},\mathbf{j}}$.
 - 3. (5 points) For any finite dimensional representation V of a group G we can construct another representation V^* whose representation space is $\operatorname{Hom}_F(V, F)$ and where $g \in G$ acts on a linear map $f: V \to F$ to give ${}^g f$, where ${}^g f(v) = f(g^{-1}v)$. Suppose that F is infinite and V is a polynomial representation of $GL_n(F)$. Show that V^* is polynomial if and only if $GL_n(F)$ acts trivially on V.
 - 4. (5 points) Show that the simple $S_F(n,r)$ -modules are self-dual.
 - 5. (5 points) In the situation where we have an algebra B containing an idempotent e and a Schur functor $f: B\text{-mod} \to eBe\text{-mod}$, show that the left adjoint and the right adjoint functors of f need not be naturally isomorphic. The left adjoint is $W \mapsto Be \otimes_{eBe} W$ and the right adjoint is $W \mapsto \text{Hom}_{eBe}(eB, W)$.