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Landmark Theorems

0.1 Representations of Sr

Theorem 0.1.1. The simple representations Dλ of Sr over Fp are parametrized by
p-regular partitions λ of r. They are self-dual and absolutely irreducible.

Other properties: The Specht module Sλ has one composition factor Dλ and all
others are Dµ with µ D λ.

Theorem 0.1.2. As µ ranges over partitions of r, the indecomposable summands Y λ

of Mµ = Fp ↑SrSµ are parametrized by the partitions λ of r. Each permutation module

Mµ has a summand Y µ with multiplicity 1, and all other summands Mλ have λ D µ.

Other properties: The Mλ have a Specht filtration. Mλ is projective if and only if
λ′ is p-regular.

We will avoid the usual things done in characteristic zero in other courses: con-
struction of the character table, hook length formula, Murnaghan-Nakayama etc etc.

0.2 Polynomial representations of GLn(k)

Let k be a field of characteristic p and E = kn. Sr acts on E⊗r by permuting the
positions of the tensor factors, and E⊗r is a direct sum of permutation modules Mλ. We
define Sk(n, r) = EndkSr(E

⊗r). This is the Schur algebra associated to this situation.

Theorem 0.2.1. Sk(n, r) is quasi-hereditary. When n ≥ r all the Sk(n, r) are Morita
equivalent. The simple Sk(n, r)-modules are parametrized by partitions of r into at
most n parts.

Theorem 0.2.2. The polynomial representations of GL(n(k)) are direct sums of ho-
mogeneous polynomial representations of various degrees r.

Theorem 0.2.3. When k is infinite the algebra homomorphism k[GLn(k)]→ Sk(n, r)
is surjective. The polynomial representations of degree r are the same as the represen-
tations of Sk(n, r). When n ≥ r the simple polynomial representations of degree r are
parametrized by the partitions of r.
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0.3 Representations of GL(Fpn)

Theorem 0.3.1. The simple FpnGL(Fpn)-modules are parametrized by ‘weights’ and
are absolutely simple. Thus, for any field k of characteristic p, the simple kGL(Fpn)-
modules can all be written in Fnp .

0.4 Functorial methods

Writing Veck for the category of finite dimensional vector spaces over k we consider
the category Funk of functors Veck → Veck. This is an abelian category. For example,
the functor V 7→ S17V and the functor V 7→ Λ6V lie in Funk.

Theorem 0.4.1. The simple objects in Funk are parametrized by pairs (n,W ) where
n ≥ 0 and W is a simple representation of GLn(k). The corresponding simple functor
sends kn to W and is zero on spaces of dimension < n. Each value on km is a simple
module for GLm(k) or zero.



Chapter 1

Dual spaces and bilinear forms

This follows the first section of James’ book and is quite incomplete.
Let M be a finite dimensional vector space over a field k and put M∗ = Homk(M,k).

Let V be a subspace of M . We may take a basis e1, . . . , ek for V and extend it to a
basis e1, . . . , em for M , so that M∗ has a dual basis ε1, . . . , εm with εi(ej) = δij . Thus
dimM = dimM∗.

We put V ◦ = {f ∈M∗
∣∣ f |V = 0}.

Lemma 1.0.1. V ◦ has basis εk+1, . . . , εm, so that dimV + dimV ◦ = m.

Proposition 1.0.2. The vector space of bilinear forms 〈−,−〉 : M ×M → k is iso-
morphic to Hom(M,M∗).

Proof. Suppose that 〈−,−〉 : M ×M → k is a bilinear form on M . There is a map

Lemma 1.0.3. A bilinear form is non-singular if and only if the corresponding map θ
is injective. Thus if dimM is finite, it is equivalent to require that θ : M →M∗ be an
isomorphism.

We define V ⊥ = {x ∈M
∣∣ 〈x, v〉 = 0 for all v ∈ V }.

Lemma 1.0.4. If U ⊆ V , W are subspaces of M then V ⊥ ⊆ U⊥ and (U + W )⊥ =
U⊥ ∩ V ⊥.

Proposition 1.0.5. If 〈−,−〉 is non-singular and dimM is finite then θ : M → M∗

maps V ⊥ isomorphically to V ◦ and hence dimV + dimV ⊥ = dimM . We have V =
V ⊥⊥ and (U ∩ V )⊥ = U⊥ + V ⊥.
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Chapter 2

Representations of Sr

The approach and results are taken directly from James’ book.

2.1 Tableaux and tabloids

A partition of r is a list of positive integers λ = [λ1, λ2, λ3, . . .] with λ1 ≥ λ2 ≥ λ3 ≥ . . .
and

∑
λi = r. Partitions are partially ordered by the dominance relation: we say that

λ = [λ1, λ2, λ3, . . .] dominates µ = [µ1, µ2, µ3, . . .] if for all j,
∑j

i=1 λi ≥
∑j

i=1 µi.
For each partition we have a Young subgroup Sλ = Sλ1 ×Sλ2 ×· · · . The set of right

cosets Sλ\Sr is a transitive Sr-set whose elements can be described in a certain way,
by means of tabloids. We first define a λ-tableau to be a Young diagram of shape λ
filled with the numbers {1, . . . , r}, such as

t =
5 1 2

4 3

for the partition λ = [3, 2]. The symmetric group Sr permutes the λ-tableaux by acting
on their entries. Let Rt and Ct denote the row and column stabilizers of t, so that in
this example

Rt = S{5,1,2} × S{4,3}, Ct = S{5,4} × S{1,3} × S{2}.

Lemma 2.1.1. If t is a λ-tableau and π ∈ Sr then Rtπ = π−1Rtπ and Ctπ = π−1Ctπ.

We put an equivalence relation on λ-tableaux by saying that two are equivalent if
the numbers in each row are the same. Thus the equivalence class of t is tRt. We write
the equivalence class as {t} and denote it pictorially by leaving out the vertical lines:

{t} =
5 1 2

4 3

Such an equivalence class is called a λ-tabloid. The one above is the same as the tabloid

1 2 5

3 4

4



CHAPTER 2. REPRESENTATIONS OF SR 5

and evidently we can write tabloids with the entries increasing along each row. Now
Sr permutes the set of tabloids by acting on the entries. The stabilizer of the λ-tabloid
with the numbers {1, . . . , r} written along the rows in order is the Young subgroup Sλ
and the action on the λ-tabloids is transitive. Hence:

Lemma 2.1.2. The set of λ-tabloids is isomorphic to Sλ\Sr as a Sr-set. The number
of λ-tabloids is

r!

λ1!λ2! · · ·
The Sr-sets that arise this way include examples such as the set of unordered tuples

of elements of {1, . . . , r} of some given length, or the set of ordered tuples of some given
length, or combinations of these possibilities.

2.2 Permutation modules

Over a ring k define Mλ to be the permutation module on the set of λ-tabloids. Thus
Mλ ∼= M ↑SrSλ , and Mλ is generated as a kSr-module by any single tabloid. If t is a
λ-tableau let κt be the element of the group algebra kSr that is the signed sum of the
elements of Ct. Thus

κt =
∑
π∈Ct

(sgnπ)π.

We define et = {t}κt as an element of Mλ. In the case of the example

t =
5 1 2

4 3

we have

et =
5 1 2

4 3
−

4 1 2

5 3
−

5 3 2

4 1
+

4 3 2

5 1
.

The Specht module Sλ for the partition λ is defined to be the submodule of Mλ spanned
by the polytabloids.

Proposition 2.2.1. Let t be a λ-tableau and π ∈ Sr.

1. et is a linear combination of tabloids with ±1 coefficients.

2. κtπ = π−1κtπ and etπ = etπ.

3. Sλ is a kSr-module and is generated as a kSr-module by any single polytabloid.

4. κt = κC1κC2 · · ·κCs where the Ci are the columns of t.

Lemma 2.2.2 (‘Basic Combinatorial Lemma’). Let λ and µ be partitions of r and
suppose that t1 is a λ-tableau and t2 is a µ-tableau. Suppose that for every i the
numbers from the ith row of t2 belong to different columns of t1. Then λ D µ.
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Proof. We may sort the columns of t1 so that the entries in each column appear in
increasing rows of t2. Now all entries from the first i rows of t2 appear in the first
i rows of t1, for each i. Then the number of entries in the first i rows of t2 namely,
µ1 + µ2 + · · ·+ µi is less that the number of entries in the first i rows of t1.

Lemma 2.2.3. Let λ and µ be partitions of r. Suppose that t is a λ-tableau and t∗ is a
µ-tableau, and that {t∗}κt 6= 0. Then λ D µ, and if λ = µ then {t∗}κt = ±{t}κt = ±et.

Proof. There are two possibilities:
(a) for every row of t∗ the entries lie in different columns of t, or
(b) there exist numbers a and b in the same row of t∗ and same column of t. (a) implies
λ D µ by Lemma 2.2.2. Assuming (b) we have {t∗} = {t∗}(a, b). Also (1 − (a, b)) is
a factor of κCi if a, b lie in column i of t, and this is a factor of κt. This shows that
{t∗}κt = 0 in this case.

Now suppose λ = µ. The possibility {t∗}κt = 0 is excluded by hypothesis, so we are
in case (a) and we may write {t∗} = {t}π for some π ∈ Ct by rearranging the columns.
Thus {t∗}κt = {t}πκt = ±{t}κt = ±et

Corollary 2.2.4. If u is an element of Mµ and t is a µ-tableau, then uκt is a multiple
of et.

Proof. This is because u is a linear combination of µ-tabloids {t∗} and {t∗}κt is a
multiple of et always, by Lemma 2.2.3.

Let 〈−,−〉 be the standard bilinear form on Mλ with respect to its permutation
basis. This form is Sr-invariant.

Lemma 2.2.5. We have 〈uκt, v〉 = 〈u, vκt〉.

Proof. Calculate.

Theorem 2.2.6 (The Submodule Theorem, James). If U is a kSr-submodule of Mµ

then either U ⊇ Sµ or U ⊆ Sµ⊥.

Proof. Suppose u ∈ U and t is a µ-tableau. Then by Corollary 2.2.4 uκt is a multiple
of et. There are two possibilities
(a) uκt = 0 always, (b) we can find u and t so that uκt 6= 0.

In case (a) we have 0 = 〈uκt, {t}〉 = 〈u, {t}κt〉 = 〈u, et〉 always, so that U ⊆ Sµ⊥

since the et span Sµ. In case (b) we have that uκt is a non-zero multiple of et, and this
belongs to U . Since Sµ is generated by any single et we deduce that U ⊇ Sµ.

We say that a kG-module V is absolutely irreducible if V ⊗k K is an irreducible
KG-module for all extension fields K ⊇ k.

Theorem 2.2.7. Sµ/(Sµ ∩ Sµ⊥) is either zero or aboslutely irreducible. Furthermore,
if this is non-zer, then Sµ∩Sµ⊥ is the unique maximal submodule of Sµ, and Sµ/(Sµ∩
Sµ⊥) is self-dual.
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Proof. James page 15.

In characteristic zero Sµ ∩ Sµ⊥ = 0 always, so the Sµ are irreducible. We will
conclude that we have a complete list of irreducible kSr-modules after showing that
the Sµ are all non-isomorphic, since the number of irreducible representations equals
the number of conjugacy classes of Sr, which equals the number of partitions of r,
which equalis the number of isomorphism classes of Specht modules.

Example 2.2.8. Take λ = [n − 1, 1]. If the characteristic of k is p then p 6
∣∣ r if and

only if Mλ = Sλ ⊕ Sλ⊥ = S[r−1,1] ⊕ S[r], if and only if S[r−1,1] is irreducible. On the
other hand p

∣∣ n if and only if 0 ⊂ Sλ⊥ ⊂ Sλ ⊂Mλ is the unique composition series of
Mλ, and then Sλ/Sλ⊥ is irreducible.

This is because Sλ is the coordinate sum zero subspace of Mλ, so that (Sλ)⊥ is
spanned by the vector with 1 in every coordinate, which lies in Sλ if and only if p

∣∣ r.
In that case, because every submodule of Mλ either contains Sλ or is contained in
(Sλ)⊥, these are the only proper submodules of Mλ.

Lemma 2.2.9. Let θ : Mλ → Mµ be a kSr-homomorphism and suppose that Sλ 6⊆
Ker θ. Then λ D µ, and if λ = µ the restriction of θ to Sλ is multiplication by a
constant.

Proof. James page 16.

Corollary 2.2.10. If k has characteristic zero and θ : Sλ → Mµ is non-zero then
λ D µ, and if λ = µ then θ is multiplication by a constant.

Proof. This follows because in characteristic zero Mλ = Sλ ⊕ (Sλ)⊥, so that any ho-
momorphism θ extends to a homomorphism from Mλ by defining it to be zero on
(Sλ)⊥.

Theorem 2.2.11. The Specht modules over Q are self-dual and absolutely irreducible,
and give all the ordinary irreducible representations of Sr.

2.2.1 Exercise

1. Suppose V has a unique maximal submodule V1. Show that V/V1 is simple.
Let θ : V → M be a nonzero homomorphism. Show that M has a composition factor
isomorphic to V/V1.

2.3 p-regular partitions

We say that a partition λ ` r is p-regular if λ has < p parts of each size, and otherwise λ
is p-singular. For example if p = 2 and r = 5 the 2-regular partitions are [5], [4, 1], [3, 2].
Our goal is to show that Sλ/(Sλ ∩ Sλ⊥ 6= 0 if and only if λ is p-regular, and that this
gives a complete list of irreducible kSr-modules over any field of characteristic p.
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We define an element g of a finite group G to be p-regular if and only if its order is
not divisible by p. We will use the fact that, over a large enough field k of characteristic
p, the number of irreducible kG-modules equals the number of p-regular classes of G.

Lemma 2.3.1. An element π ∈ Sr is p-regular if and only if π has no cycles of length
divisible by p, if and only if the cycle type of π has no parts divisible by p.

Proof. This is clear.

Lemma 2.3.2. The number of p-regular partitions of r equals the number of p-regular
conjugacy classes of Sr.

Proof. We simplify the expression

(1− xp)(1− x2p) · · ·
(1− x)(1− x2) · · ·

in two ways. First we cancel all the terms in the numerator with the corresponding
terms in the denominator, to give a product∏

p6
∣∣i

1

(1− xi)
=
∏
p6
∣∣i (1 + xi + (xi)2 + · · · ).

In this product the coefficient of xr is the number of partitions of r where no parts are
divisible by p, the partition [. . . 3c2b1a] corresponding to a term with xa from the first
bracket, (x2)b from the second, (x3)c from the third, and so on.

In the second way of canceling terms, we factor each term of the denominator into
the term of the numerator immediately above it, giving

∞∏
m=1

(1 + xm + · · ·+ (xm)p−1).

Now the coefficient of xr is the number of partitions with no part occurring p or more
times, using a similar correspondence with partitions to the one described before.

We define gµ = gcd{〈et, et∗〉
∣∣ t, t∗ range over all µ-polytabloids}.

Lemma 2.3.3. Over Fp, Sµ/(Sµ ∩ Sµ⊥) = 0 if and only if Sµ ⊆ Sµ⊥, if and only if
p
∣∣ gµ.

In the following we will let µ = [. . . , 3a3 , 22, 1a1 ], so that aj is the number of parts
of µ of size j.

Proposition 2.3.4.
∏∞
j=1 aj !

∣∣ gµ and gµ
∣∣ ∏∞

j=1(aj !)
j.

Corollary 2.3.5. Over Fp, Sµ/(Sµ ∩ Sµ⊥) 6= 0 if and only if µ is p-regular.
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When µ is p-regular we define Dµ = Sµ/(Sµ ∩Sµ⊥), and this is an irreducible, self-
dual kSr-module. We wish to show that this accounts for all irreducible kSr-modules,
and for this we need to know that if λ 6= µ then Dµ 6∼= Dλ.

Lemma 2.3.6. Let θ : Sλ → Mµ/U be a non-zero homomorphism of kSr-modules,
where U is some submodule of Mµ. Then λ D µ; and λ = µ implies that Im θ ⊆
(Sµ + U)/U .

Corollary 2.3.7. Suppose that θ : Dλ → Mµ/U is a non-zero homomorphism, where
λ is p-regular and U ⊆Mµ. Then λ D µ, and U ⊇ Sµ implies that λ . µ.

Theorem 2.3.8 (James). Let k have characteristic p. The Dµ, where µ is p-regular,
form a complete set of irreducible kSr-modules. Furthermore Dµ ∼= Dµ∗ and Dµ is
absolutely irreducible. Every field is a splitting field for Sr.

Theorem 2.3.9 (James). All composition factors of Mµ have the form Dλ with λ.µ,
except if µ is p-regular, in which case Dµ also occurs as a composition factor with
multiplicity 1.

2.4 Young modules

We will use the Krull-Schmidt theorem in what follows.

Proposition 2.4.1. Let λ be a partition of r and write Mλ = Y1⊕· · ·Yd as a direct sum
of indecomposable FpSr-modules. There is a unique i with Yi ⊇ Sλ. We write Y λ for
this summand. Then Y λ is determined independently of the direct sum decomposition.
Furthermore, Y λ ∼= Y µ if and only if λ = µ.

Proof. We apply the submodule theorem of James: for each i, either Ui ⊇ Sλ or
Ui ⊆ Sλ⊥. Since not all Ui can be contained in Sλ⊥ there must be at least one that is
not, and there can be no more than one since two such summands would not intersect
in 0.

To show that Y λ is defined independently of the decomposition, we use the fact that
permutation modules and all homomorphisms between them are liftable from Fp to Zp.
This comes about because there is a basis for homomorphisms between permutation
modules given in terms of double cosets, valid over any ring, so that homomorphisms
lift. Furthermore, idempotents lift to idempotents. This means that a decomposition
Mλ = Y1⊕· · ·Yd is the reduction of a decomposition M̃λ = Ỹ1⊕· · · Ỹd of ZpSr-modules.
By the same argument as above applied to Qp ⊗ M̃λ, one of the summands Qp ⊗ Ỹj
contains the Specht module Qp⊗S̃λ, and j must be the previous i because the reduction
of Ỹj modulo p, namely Yj must contain the reduction of S̃λ modulo p, namely Sλ.
Since Qp⊗ S̃λ occurs with multiplicity 1 in Qp⊗ M̃λ it follows that Yi is the reduction
of the unique summand Ỹi for which Qp⊗ Ỹi has Qp⊗ S̃λ as a composition factor, and
this determines the isomorphism type of Ỹi. Since Yi is the reduction modulo p, its
isomorphism type is also determined and it shows that if µ 6= λ then Y µ 6∼= Y λ.



CHAPTER 2. REPRESENTATIONS OF SR 10

The other composition factors of Qp ⊗ M̃λ are all Specht modules Qp ⊗ S̃µ with
µ D λ, and so if any of the other summands of Mλ are Young modules, they must be
Y µ with µ D λ

In fact, all of the summands of the Mλ are Young modules, but we will deduce
this from information coming from the Schur algebra. For now, we will take this as a
hypothesis that needs to be proved.

Theorem 2.4.2. 1. The Y λ are self-dual.

2. Y λ appears as a summand of Mλ with multiplicity 1.

3. If Y µ is a summand of Mλ then µ D λ.

Proof. Evidently (Y λ)∗ is a summand of (Mλ)∗ ∼= Mλ and its lift Qp ⊗ Ỹ λ∗ has Qp ⊗
S̃λ∗ ∼= Qp ⊗ S̃λ as a composition factor. This identifies (Y λ)∗ as Y λ. Since Y λ is
characterized as the unique summand of Mλ for which Qp ⊗ Ỹ λ has Qp ⊗ S̃λ as a
composition factor, it occurs with multiplicity 1 in Mλ. Since the other composition
factors of Qp⊗M̃λ are Qp⊗S̃µ with µ.λ, any other summands Y µ of Mλ have µ.λ.



Chapter 3

The Schur algebra

3.1 Tensor space

Let E be a vector space of dimension n over k. Elements of E⊗r are linear combinations
of tensors v1 ⊗ · · · ⊗ vr where vi ∈ E and the symmetric group Sr acts on these by
permuting the positions in which vectors from E occur in the tensor product. Thus
when r = 3, for example,

(v1 ⊗ v2 ⊗ v3)(1, 2) = v2 ⊗ v1 ⊗ v3

and
(v1 ⊗ v2 ⊗ v3)(1, 2)(2, 3) = v2 ⊗ v3 ⊗ v1 = (v1 ⊗ v2 ⊗ v3)(1, 3, 2).

We see that
(v1 ⊗ v2 ⊗ v3 · · · )π = v1π−1 ⊗ v2π−1 ⊗ v3π−1 · · ·

gives a right action of Sr on E⊗r.

Proposition 3.1.1. As a kSr-module, E⊗r is a permutation module, and is a direct
sum of modules Mλ where λ is a partition of r with at most n parts. Every such Mλ

appears as a summand of E⊗r. Thus E⊗r is a direct sum of Young modules Y λ where
λ is a partition of r with at most n parts.

Proof. Let e1, . . . , er be a basis for E. The basic tensors ei1 ⊗ · · · ⊗ eir are permuted
by Sr and each orbit contains a tensor · · · ei2 ⊗ · · · ⊗ ei2 ⊗ ei1 ⊗ · · · ⊗ ei1 where the λj
suffices all equal to ij are grouped together, and we may assume · · · ≥ λ2 ≥ λ1. Thus
λ = [· · ·λ2, λ1] is a partition of r, and it has at most n parts, because there are at most
n possible values for the λi. The stabilizer of such a tensor is the Young subgroup Sλ.
Thus the tensors in this orbit biject with the cosets Sλ\Sr and span a copy of Mλ,
where λ has at most n parts. The final statement about Young modules follows from
the decomposition of the Mλ into Young modules.

We define the Schur algebra Sk(n, r) to be EndkSr(E
⊗r). Looking ahead to our

application of this, we let the general linear group GL(E) act diagonally on E⊗r, so

11
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that if g ∈ GL(E) then g(v1 ⊗ · · · ⊗ vr) = gv1 ⊗ · · · ⊗ gvr. Evidently this commutes
with the action of Sr, so we get a ring homomorphism kGL(E)→ S(n, r), and S(n, r)-
modules become kGL(E)-modules.

Example 3.1.2. Let r = 2 and dimE = 2. Then E has a basis e1, e2, and E⊗2 has a
basis e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2. This is permuted by S2 with orbits {e1⊗e1}, {e1⊗
e2, e2 ⊗ e1}, {e2 ⊗ e2} so that E⊗2 ∼= M [2] ⊕M [12] ⊕M [2].

In characteristic 2 these three modules are indecomposable and are equal to the
corresponding Young modules. This is apparent for M [2] because it has dimension 1.
We can see that M [12] is indecomposable in various ways. One way, consistent with the
theory of representations of the symmetric groups, is to observe that S[12] is spanned
by the polytabloid

1

2
−

2

1

so it has dimension 1 and is self-dual in characteristic 2, so S[12]⊥ = S[12]. By the sub-
module theorem, all submodules of M [12] either contain or are contained in this space,
so it is the only proper submodule of M [12]. This forces M [12] to be indecomposable
and we may describe it pictorially as k

k . Thus S(2, 2) = End(k⊕ k
k ⊕k). Let us describe

the algebra S(2, 2)� := End(k ⊕ k
k ) which is related to S(2, 2) as S(2, 2)� = eS(2, 2)e

where e is projection onto k ⊕ k
k . In order to understand this relationship fully we

should study Morita equivalence.
We may write elements of S(2, 2)� as matrices[

φ11 φ12

φ21 φ22

]
where φ11 ∈ Hom(k, k), φ12 ∈ Hom( kk , k), φ21 ∈ Hom(k, kk ), φ22 ∈ Hom( kk ,

k
k ), and

such matrices multiply together with the usual rules of matrix multiplication. These
four spaces have dimensions 1, 1, 1, 2, the first spanned by 1k, the last spanned by
1 k
k

and another nilpotent endomorphism. Thus S(2, 2)� can be realized as the set of

matrices a 0 f
g b h
0 0 b

 .
It can be easier to understand this algebra pictorially. There are two simple modules
α, β where 1k acts as 1 on α and 0 on β, and 1 k

k
acts as 1 on β and as 0 on α. These

two idempotents give a decomposition of S(2, 2)� as a direct sum of

S(2, 2)�1k = S(2, 2)�

1 0 0
0 0 0
0 0 0

 = {

a 0 0
g 0 0
0 0 0

}
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and

S(2, 2)�1 k
k

= S(2, 2)�

0 0 0
0 1 0
0 0 1

 = {

0 0 f
0 b h
0 0 b

}
as left S(2, 2)�-modules. These modules are projective because they are summands of
the regular representation. We see that their structure is

S(2, 2)� = α
β ⊕

β
α
β

where we identify the composition factors by the action of the idempotents 1k and 1 k
k

.

We may now list the five indecomposable modules of this algebra. We see also that it
has finite global dimension and write down projective resolutions of the simples α and
β.

If we had done a similar calculation with S(2, 2) instead of S(2, 2)� the difference
would have been that in writing down matrices for the endomorphisms of k ⊕ k ⊕ k

k
there would have been have been a 2× 2 block in the top left corner, giving a matrix
summand with a single simple module, now 2-dimensional instead of 1-dimensional.
The submodule structure of the projective modules would have been described by the
same pictures.

We may also see explicitly what E⊗2 looks like as an SF2(2, 2)-module.

Proposition 3.1.3. As an SF2(2, 2)-module, E⊗2 =
β
α
β

is uniserial, with α
β = ST2(E)

(the symmetric tensors), β
α = Sym2(E) (the symmetric power) and β = Λ2(E).

Proof. Regarding E = k2 ⊕ k
k = y ⊕ x

z we have a composition series z ⊆ y + z ⊆
x+y+z for the action of SF2(2, 2), and the action of the idempotents 1k2 and 1 k

k
shows

that the composition factors are β, α, β taken in order. Furthermore, consideration
of the endomorphisms shows that this is the only composition series. From earlier
identification of these terms, we see that this series has terms with bases e1⊗e2 +e2⊗e1

and e1 ⊗ e2 + e2 ⊗ e1, e1 ⊗ e1, e2 ⊗ e2 this identifies the terms as claimed.

We may also example the action of elements of GL(E) on these subspaces by writing

the elements as matrices

[
a b
c d

]
with respect to the basis e1, e2, and we find that

the action of such matrix is via another matrix with entries that are homogeneous

polynomials of degree 2 in a, b, c, d. In the case of the module α the matrix is

[
a2 b2

c2 d2

]
which describes a Frobenius twist of the natural representation of GL(E).

When the characteristic of k is not 2 we have decompositions M [12] = S[2] ⊕ S[12]

and E⊗2 = (S[2])3 ⊕ S[12]. This module is semisimple and so S(2, 2) = M3(k)⊕ k as a
ring. It has two simple modules, of dimensions 3 and 1. Now E⊗2 = Sym2(E)⊕Λ2(E)
and these subspaces have bases e1 ⊗ e2 + e2 ⊗ e1, e1 ⊗ e1, e2 ⊗ e2 and e1 ⊗ e2 − e2 ⊗ e1.
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3.2 Homomorphisms between permutation modules

The next results are what was needed in identifying the properties of Young modules.

Lemma 3.2.1. Let G permute a set Ω and let H be a subgroup of G and let ω ∈ Ω.
Then there is a map of G-sets H\G → Ω which sends Hg 7→ ωg if and only if H ⊆
StabG(ω).

Proof. The specification given is a morphism of G-sets provided that it is well-defined,
which means that if Hg1 = Hg then ωg1 = ωg. In such a case g1 = hg for some
h ∈ H, so that ωg1 = ωhg and this equals ωg if and only if ωh = ω or, in other words,
h ∈ StabG(ω).

Proposition 3.2.2. Let G be a finite group with subgroups H and K and let R be
a commutative ring. Then HomRG(R[H\G], R[K\G]) is a free R-module with basis
in bijection with K\G/H. Specifically, to each double coset KgH there corresponds a
RG-homomorphism H 7→

∑
h∈[K\KgH]Kgh =

∑
h∈[(Kg∩H)\H]Kgh.

Proof. The expression
∑

h∈[K\KgH] is the sum of the elements in the H-orbit contain-
ing K ∈ R[K\G], and it is stabilized by H. Therefore there is a map of G sets from
H\G to R[K\G] sending H to

∑
h∈[K\KgH] and extends to an RG-module homomor-

phism defined on R[H\G]. The morphisms constructed in this way are all linearly
independent, because their images have disjoint support. The two sums are equal be-
cause K\KgH ∼= (Kg ∩ H)\H as H-sets. It remains to show that these morphisms
span the full space of homomorphisms. One can argue that the image of H under any
homomorphism must have coefficients that are constant on H-orbits. One can also use
Frobenius reciprocity to show that HomRG(R[H\G], R[K\G]) ∼=

⊕
K\G/H Hom(R,R),

which has rank equal to |K\G/H|.

Corollary 3.2.3. Permutation modules and homomorphisms between them lift through
ring homomorphisms.

Proof. This is because each G-set is uniquely a disjoint union of orbit, giving a uniquely
determined direct sum decomposition of the corresponding permutation module. The
formula for the basis of homomorphisms between two summands is independent of the
choice of ground ring.

Proposition 3.2.4. If λ, µ ` r then double cosets Sλ\Sr/Sµ biject with row-semistandard
λ-tableaux of type µ.

Proof. Needed.
Exercises need to
be written.
Should I give the
homomorphism
in 3.2.2 a name
such as θg for
future reference?

The next result uses notation θT of James, not so far introduced. Let e ∈ SF (n, r)
be the endomorphism of E⊗r that is projection onto a summand M [1r], spanned by the
eu,uπ, π ∈ Sr, u = (1, 2, . . . , r).
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Proposition 3.2.5. SF (n, r)e has basis the θT where T is a [1r]-tableau of content µ,
and µ is a composition of r with ≤ n parts. The mapping S(n, r)e → E⊗r given by
θT 7→ eT is an isomorphism of SF (n, r)-modules.

Proof. e is the identity on M [1r] and 0 on the others summands. Therefore θT e ∈
SF (n, r)e is zero unless T is a [1r]-tableau of content µ. For such T , θT e = θT , and so
these θT are independent.

3.3 The structure of endomorphism rings
Be specific about
right and left
modules.

Proposition 3.3.1. Let U be a module for a ring A with a 1. Expressions

U = U1 ⊕ · · · ⊕ Un

as a direct sum of submodules biject with expressions 1U = e1 + · · ·+ en for the identity
1U ∈ EndA(U) as a sum of orthogonal idempotents. Here ei is obtained from Ui as
the composite of projection and inclusion U → Ui → U , and Ui is obtained from ei as
Ui = ei(U). The summand Ui is indecomposable if and only if ei is primitive.

Proof. We must check several things. Two constructions are indicated in the statement
of the proposition: given a direct sum decomposition of U we obtain an idempotent
decomposition of 1U , and vice-versa. It is clear that the idempotents constructed from
a module decomposition are orthogonal and sum to 1U . Conversely, given an expression
1U = e1 + · · · + en as a sum of orthogonal idempotents, every element u ∈ U can be
written u = e1u + · · · + enu where eiu ∈ eiU = Ui. In any expression u = u1 + · · ·un
with ui ∈ eiU we have ejui ∈ ejeiU = 0 if i 6= j so eiu = eiui = ui, and this expression
is uniquely determined. Thus the expression 1U = e1 + · · · + en gives rise to a direct
sum decomposition.

We see that Ui decomposes as Ui = V ⊕W if and only if ei = eV + eW can be
written as a sum of orthogonal idempotents, and so Ui is indecomposable if and only
if ei is primitive.

Corollary 3.3.2. An A-module U is indecomposable if and only if the only non-zero
idempotent in EndA(U) is 1U .

Proof. From the proposition, U is indecomposable if and only if 1U is primitive, and
this happens if and only if 1U and 0 are the only idempotents in EndA(U). This
last implication in the forward direction follows since any idempotent e gives rise to
an expression 1U = e + (1U − e) as a sum of orthogonal idempotents, and in the
opposite direction there simply are no non-trivial idempotents to allow us to write
1U = e1 + e2.

The next theorem might be called the ‘Fundamental Theorem of Endomorphism
Rings’. If U is a right A-module and we let endomorphisms of U act from the left,
U becomes a (EndA(U), A)-bimodule. We have functors between right A-modules and
left EndA(U)-modules as follows: if M is a right A-module we put M \ := HomA(M,U),
and if W is a left EndA(U)-module we put W \ := HomEndA(U)(W,U).
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Theorem 3.3.3. Let U be a module for a ring A with a 1. There is a contravariant
equivalence of categories between the full subcategory of A-modules with objects the direct
sums of summands of U , and the full subcategory of EndA(U)-modules with objects the
direct sums of modules EndA(U)e, where e2 = e ∈ EndA(U).

The EndA(U)-modules EndA(U)e are all projective, but in general not all projective
EndA(U)-modules are direct sums of these. When A is a finite dimensional algebra over
a field the projective modules are all of this form, but we have not proven this yet.

Proof. Write the first category as Add(U) and the second category as Proje(End(U)).
We define a functor

Add(U)→ Proje(End(U))

by M 7→ HomA(M,U), and a functor

Proje(End(U))→ Add(U)

by P 7→ HomEnd(U)(P,U). We verify that if Ui = ei(U) is a summand of U , then
HomA(Ui, U) ∼= End(U)ei and that if e is an idempotent in End(U) then

HomEnd(U)(End(U)e, U) ∼= eU

as A-modules.

Corollary 3.3.4. Let R be a field. For each partition λ of r into at most n parts there
is an indecomposable projective SR(n, r)-module Pλ, with distinct partitions giving non-
isomorphic modules.

When R is a field it is a fact that every indecomposable projective SR(n, r)-module
has the form SR(n, r)e for some idempotent element e, but we do not know this yet.

Corollary 3.3.5. Let λ be a partition of r with at most n parts. The left regu-
lar representation of SR(n, r) is isomorphic to a direct sum of modules ST λ(E) :=
ST λ1(E)⊗ · · · ⊗ ST λd(E), and these are projective SR(n, r)-modules. Every indecom-
posable projective SR(n, r)-module of the form SR(n, r)e is a direct summand of one of
these. In particular, the symmetric tensors ST r(E) is projective as a SR(n, r)-module,
as is E⊗r.

Proof. We apply the functor to the permutation moduleMλ, which is a direct summand
of E⊗r as an SR(n, r)-module. Now

HomRSr(M
λ, E⊗r) = HomRSr(R ↑SrSλ , E

⊗r)

∼= HomRSλ(R,E⊗r ↓SrSλ)

∼= (E⊗λ1)Sλ1 ⊗ · · · ⊗ (E⊗λd)Sλd

= ST λ1(E)⊗ · · · ⊗ ST λd(E).
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Example 3.3.6. When R = F2, n = r = 2 we have ST [2] = α
β and ST [12] = E⊗2 =

β
α
β

.

Both modules have been seen to be projective.

Corollary 3.3.7. When F is a field of characteristic 0, or p where p > r, the functors
\ given contravariant equivalences between FSr -mod and SF (n, r) -mod.

Proof. In this situation FSr is semisimple and hence so is SF (n, r). It follows that the
equivalence provided by the functors \ is between the full module categories.

Expand. Say
that SF (n, r) is
semisimple, and
identify the Weyl
modules, and
E⊗r as a
bimodule,
namely a direct
sum of tensor
projects of Weyl
and Specht
modules.

3.4 The radical

The next lines are taken from my book.
We put

RadU =
⋂
{M

∣∣M is a maximal submodule of U}.

In our applications U will always be Noetherian, so provided U 6= 0 this intersection
will be non-empty and hence RadU 6= U . If U has no maximal submodules (for
example, if U = 0, or in more general situations than we consider here where U might
not be Noetherian) we set RadU = U .

Lemma 3.4.1. Let U be a module for a ring A.

(1) Suppose that M1, . . . ,Mn are maximal submodules of U . Then there is a subset
I ⊆ {1, . . . , n} such that

U/(M1 ∩ · · · ∩Mn) ∼=
⊕
i∈I

U/Mi

which, in particular, is a semisimple module.

(2) Suppose further that U has the descending chain condition on submodules. Then
U/RadU is a semisimple module, and RadU is the unique smallest submodule
of U with this property.

Proof. (1) Let I be a subset of {1, . . . , n} maximal with the property that the quo-
tient homomorphisms U/(

⋂
i∈IMi) → U/Mi induce an isomorphism U/(

⋂
i∈IMi) ∼=⊕

i∈I U/Mi. We show that
⋂
i∈IMi = M1 ∩ · · · ∩Mn and argue by contradiction. If it

were not the case, there would exist Mj with
⋂
i∈IMi 6⊆ Mj . Consider the homomor-

phism

f : U → (
⊕
i∈I

U/Mi)⊕ U/Mj

whose components are the quotient homomorphisms U → U/Mk. This has kernel
Mj ∩

⋂
i∈IMi, and it will suffice to show that f is surjective, because this will imply

that the larger set I ∪ {j} has the same property as I, thereby contradicting the
maximality of I.
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To show that f is surjective let g : U → U/
⋂
i∈IMi ⊕ U/Mj and observe that

(
⋂
i∈IMi)+Mj = U since the left-hand side is strictly larger than Mj , which is maximal

in U . Thus if x ∈ U we can write x = y + z where y ∈
⋂
i∈IMi and z ∈ Mj . Now

g(y) = (0, x + Mj) and g(z) = (x +
⋂
i∈IMi, 0) so that both summands U/

⋂
i∈IMi

and U/Mj are contained in the image of g and g is surjective. Since f is obtained
by composing g with the isomorphism that identifies U/

⋂
i∈IMi with

⊕
i∈I U/Mi, we

deduce that f is surjective.
(2) By the assumption that U has the descending chain condition on submod-

ules, RadU must be the intersection of finitely many maximal submodules. Therefore
U/RadU is semisimple by part (1). If V is a submodule such that U/V is semisimple,
say U/V ∼= S1 ⊕ · · · ⊕ Sn where the Si are simple modules, let Mi be the kernel of

U → U/V
proj.−→Si. Then Mi is maximal and V = M1 ∩ · · · ∩Mn. Thus V ⊇ RadU , and

RadU is contained in every submodule V for which U/V is semisimple.

We define the radical of a ring A to be the radical of the regular representation
RadAA and write simply RadA. We present some identifications of the radical that
are very important theoretically, and also in determining what it is in particular cases.

Proposition 3.4.2. Let A be a ring. Then,

(1) RadA = {a ∈ A
∣∣ a · S = 0 for every simple A-module S}, and

(2) RadA is a 2-sided ideal of A.

(3) Suppose further that A is a finite dimensional algebra over a field. Then

(a) RadA is the smallest left ideal of A such that A/RadA is a semisimple
A-module,

(b) A is semisimple if and only if RadA = 0,

(c) RadA is nilpotent, and is the largest nilpotent ideal of A.

(d) RadA is the unique ideal U of A with the property that U is nilpotent and
A/U is semisimple.

Proof. (1) Given a simple module S and 0 6= s ∈ S, the module homomorphism

AA → S given by a 7→ as is surjective and its kernel is a maximal left ideal Ms. Now
if a ∈ RadA then a ∈ Ms for every S and s ∈ S, so as = 0 and a annihilates every
simple module. Conversely, if a ·S = 0 for every simple module S and M is a maximal
left ideal then A/M is a simple module. Therefore a · (A/M) = 0, which means a ∈M .
Hence a ∈

⋂
maximalM M = RadA.

(2) Being the intersection of left ideals, RadA is also a left ideal of A. Suppose that
a ∈ RadA and b ∈ A, so a · S = 0 for every simple S. Now a · bS ⊆ a · S = 0 so ab has
the same property that a does.

(3) (a) and (b) are immediate from Lemma 3.4.1. We prove (c). Choose any
composition series

0 = An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ A0 = AA
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of the regular representation. Since each Ai/Ai+1 is a simple A-module, RadA · Ai ⊆
Ai+1 by part (1). Hence (RadA)r ·A ⊆ Ar and (RadA)n = 0.

Suppose now that I is a nilpotent ideal of A, say Im = 0, and let S be any simple
A-module. Then

0 = Im · S ⊆ Im−1 · S ⊆ · · · ⊆ IS ⊆ S

is a chain of A-submodules of S that are either 0 or S since S is simple. There must
be some point where 0 = IrS 6= Ir−1S = S. Then IS = I · Ir−1S = IrS = 0, so in
fact that point was the very first step. This shows that I ⊆ RadA by part (1). Hence
RadA contains every nilpotent ideal of A, so is the unique largest such ideal.

Finally (d) follows from (a) and (c): these imply that RadA has the properties
stated in (d); and, conversely, these conditions on an ideal U imply by (a) that U ⊇
RadA, and by (c) that U ⊆ RadA.

Working in the generality of a finite dimensional algebra A again, the radical of A
allows us to give a further description of the radical and socle of a module. We present
this result for finite dimensional modules, but it is in fact true without this hypothesis.
We leave this stronger version to Exercise ?? at the end of this chapter.

Proposition 3.4.3. Let A be a finite dimensional algebra over a field k, and U a finite
dimensional A-module.

(1) The following are all descriptions of RadU :

(a) the intersection of the maximal submodules of U ,

(b) the smallest submodule of U with semisimple quotient,

(c) RadA · U .

(2) The following are all descriptions of SocU :

(a) the sum of the simple submodules of U ,

(b) the largest semisimple submodule of U ,

(c) {u ∈ U
∣∣ RadA · u = 0}.

Proof. Under the hypothesis that U is finitely generated we have seen the equivalence
of descriptions (a) and (b) in Lemma 3.4.1 and Corollary ??. Our arguments below
actually work without the hypothesis of finite generation, provided we assume the
results of Exercises ?? and ?? from Chapter 1. The reader who is satisfied with a
proof for finitely generated modules can assume that the equivalence of (a) and (b) has
already been proved.

Let us show that the submodule RadA · U in (1)(c) satisfies condition (1)(b).
Firstly U/(RadA · U) is a module for A/RadA, which is a semisimple algebra. Hence
U/(RadA · U) is a semisimple module and so RadA · U contains the submodule of
(1)(b). On the other hand if V ⊆ U is a submodule for which U/V is semisimple then
RadA·(U/V ) = 0 by Proposition 3.4.2, so V ⊇ RadA·U . In particular, the submodule
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of (1)(b) contains RadA · U . This shows that the descriptions in (1)(b) and (1)(c) are
equivalent.

To show that they give the same submodule as (1)(a), observe that if V is any
maximal submodule of U , then as above (since U/V is simple) V ⊇ RadA · U , so
the intersection of maximal submodules of U contains RadA · U . The intersection of
maximal submodules of the semisimple module U/(RadA · U) is zero, so this gives a
containment the other way, since they all correspond to maximal submodules of U . We
deduce that the intersection of maximal submodules of U equals RadA · U .

For the conditions in (2), observe that {u ∈ U
∣∣ RadA · u = 0} is the largest

submodule of U annihilated by RadA. It is thus an A/RadA-module and hence is
semisimple. Since every semisimple submodule of U is annihilated by RadA, it equals
the largest such submodule.

3.5 Projective covers, Nakayama’s lemma and lifting of
idempotents

We now develop the theory of projective covers. We first make the definition that an
essential epimorphism is an epimorphism of modules f : U → V with the property
that no proper submodule of U is mapped surjectively onto V by f . An equivalent
formulation is that whenever g : W → U is a map such that fg is an epimorphism, then
g is an epimorphism. One immediately asks for examples of essential epimorphisms,
but it is probably more instructive to consider epimorphisms that are not essential.
If U → V is any epimorphism and X is a non-zero module then the epimorphism
U ⊕X → V constructed as the given map on U and zero on X can never be essential.
This is because U is a submodule of U⊕X mapped surjectively onto V . Thus if U → V
is essential then U can have no direct summands that are mapped to zero. One may
think of an essential epimorphism as being minimal, in that no unnecessary parts of U
are present. Class: which are

essential?
Z→ Z/2Z,

Z2 (1,1)−−−→ Z,
k[x]/(x5)→
k[x]/(x4)

The greatest source of essential epimorphisms is Nakayama’s lemma, given here in
a version for modules over non-commutative rings. Over an arbitrary ring a finiteness
condition is required, and that is how we state the result here. It is a fact that, when
the ring is a finite dimensional algebra over a field, the result is true for arbitrary
modules without any finiteness condition.

Theorem 3.5.1 (Nakayama’s Lemma). If U is any Noetherian module, the homomor-
phism U → U/RadU is essential. Equivalently, if V is a submodule of U with the
property that V + RadU = U , then V = U .

Proof. Suppose V is a submodule of U . If V 6= U then V ⊆ M ⊂ U where M is a
maximal submodule of U . Now V + RadU ⊆ M and so the composite V → U →
U/RadU has image contained in M/RadU , which is not equal to U/RadU since
(U/RadU)/(M/RadU) ∼= U/M 6= 0.

When U is a module for a finite dimensional algebra it is always true that every
proper submodule of U is contained in a maximal submodule, even when U is not
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finitely generated. This was the only point in the proof of Theorem 3.5.1 where the
Noetherian hypothesis was used, and so in this situation U → U/RadU is always
essential. This is shown in Exercise ?? of this chapter.

The next result is not at all difficult and could also be proved as an exercise.

Proposition 3.5.2. (1) Suppose that f : U → V and g : V → W are two module
homomorphsms. If two of f , g and gf are essential epimorphisms then so is the
third.

(2) Let f : U → V be a homomorphism of Noetherian modules. Then f is an essential
epimorphism if and only if the homomorphism of radical quotients U/RadU →
V/RadV is an isomorphism.

(3) Let fi : Ui → Vi be homomorphisms of Noetherian modules, where i = 1, . . . , n.
The fi are all essential epimorphisms if and only if

⊕fi :
⊕
i

Ui →
⊕
i

Vi

is an essential epimorphism.

Proof. (1) Suppose f and g are essential epimorphisms. Then gf is an epimorphism
also, and it is essential because if U0 is a proper submodule of U then f(U0) is a proper
submodule of V since f is essential, and hence g(f(U0)) is a proper submodule of S
since g is essential.

Next suppose f and gf are essential epimorphisms. Since W = Im(gf) ⊆ Im(g) it
follows that g is an epimorphism. If V0 is a proper submodule of V then f−1(V0) is a
proper submodule of U since f is an epimorphism, and now g(V0) = gf(f−1(V0)) is a
proper submodule of S since gf is essential.

Suppose that g and gf are essential epimorphisms. If f were not an epimorphism
then f(U) would be a proper submodule of V , so gf(U) would be a proper submodule
of W since gf is essential. Since gf(U) = W we conclude that f is an epimorphism.
If U0 is a proper submodule of U then gf(U0) is a proper submodule of W , since gf is
essential, so f(U0) is a proper submodule of V since g is an epimorphism. Hence f is
essential.

(2) Consider the commutative square

U −→ Vy y
U/RadU −→ V/RadV

where the vertical homomorphisms are essential epimorphisms by Nakayama’s lemma.
Now if either of the horizontal arrows is an essential epimorphism then so is the other,
using part (1). The bottom arrow is an essential epimorphism if and only if it is an
isomorphism; for U/RadU is a semisimple module and so the kernel of the map to
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V/RadV has a direct complement in U/RadU , which maps onto V/RadV . Thus if
U/RadU → V/RadV is an essential epimorphism its kernel must be zero and hence
it must be an isomorphism.

(3) The map
(⊕iUi)/Rad(⊕iUi)→ (⊕iVi)/Rad(⊕iVi)

induced by ⊕fi may be identified as a map⊕
i

(Ui/RadUi)→
⊕
i

(Vi/RadVi),

and it is an isomorphism if and only if each map Ui/RadUi → Vi/RadVi is an iso-
morphism. These conditions hold if and only if ⊕fi is an essential epimorphism, if and
only if each fi is an essential epimorphism by part (2).

We define a projective cover of a module U to be an essential epimorphism P → U ,
where P is a projective module. Strictly speaking the projective cover is the homo-
morphism, but we may also refer to the module P as the projective cover of U . We
are justified in calling it the projective cover by the second part of the following result,
which says that projective covers (if they exist) are unique.

Proposition 3.5.3. (1) Suppose that f : P → U is a projective cover of a module
U and g : Q → U is an epimorphism where Q is a projective module. Then we
may write Q = Q1 ⊕Q2 so that g has components g = (g1, 0) with respect to this
direct sum decomposition and g1 : Q1 → U appears in a commutative triangle

Q1
γ

↙
yg1

P
f−→ U

where γ is an isomorphism.

(2) If any exist, the projective covers of a module U are all isomorphic, by isomor-
phisms that commute with the essential epimorphisms.

Proof. (1) In the diagram
Qyg

P
f−→ U

we may lift in both directions to obtain maps α : P → Q and β : Q → P so that
the two triangles commute. Now fβα = gα = f is an epimorphism, so βα is also an
epimorphism since f is essential. Thus β is an epimorphism. Since P is projective β
splits and Q = Q1 ⊕Q2 where Q2 = kerβ, and β maps Q1 isomorphically to P . Thus
g = (fβ|Q1 , 0) is as claimed with γ = β|Q1 .
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(2) Supposing that f : P → U and g : Q→ U are both projective covers, since Q1

is a submodule of Q that maps onto U and f is essential we deduce that Q = Q1. Now
γ : Q→ P is the required isomorphism.

Corollary 3.5.4. If P and Q are Noetherian projective modules over a ring then P ∼= Q
if and only if P/RadP ∼= Q/RadQ.

Proof. By Nakayama’s lemma P and Q are the projective covers of P/RadP and
Q/RadQ. It is clear that if P and Q are isomorphic then so are P/RadP and
Q/RadQ, and conversely if these quotients are isomorphic then so are their projective
covers, by uniqueness of projective covers.

If P is a projective module for a finite dimensional algebra A then Corollary 3.5.4
says that P is determined up to isomorphism by its semisimple quotient P/RadP . We
are going to see that if P is an indecomposable projective A-module, then its radical
quotient is simple, and also that every simple A-module arises in this way. Further-
more, every indecomposable projective for a finite dimensional algebra is isomorphic
to a summand of the regular representation (something that is not true in general for
projective ZG-modules, for instance). This means that it is isomorphic to a module Af
for some primitive idempotent f ∈ A, and the radical quotient P/RadP is isomorphic
to (A/RadA)e where e is a primitive idempotent of A/RadA satisfying e = f+RadA.
We will examine this kind of relationship between idempotent elements more closely.

In general if I is an ideal of a ring A and f is an idempotent of A then clearly
e = f + I is an idempotent of A/I, and we say that f lifts e. On the other hand, given
an idempotent e of A/I it may or may not be possible to lift it to an idempotent of A.
If, for every idempotent e in A/I, we can always find an idempotent f ∈ A such that
e = f + I then we say we can lift idempotents from A/I to A.

We present the next results about lifting idempotents in the context of a ring with a
nilpotent ideal I, but readers familiar with completions will recognize that these results
extend to a situation where A is complete with respect to the I-adic topology on A.

Theorem 3.5.5. Let I be a nilpotent ideal of a ring A and e an idempotent in A/I.
Then there exists an idempotent f ∈ A with e = f + I. If e is primitive, so is any lift
f .

Proof. We define idempotents ei ∈ A/Ii inductively such that ei + Ii−1/Ii = ei−1 for Class: does this
mean
(ei + Ii−1)/Ii or
ei + (Ii−1/Ii)

all i, starting with e1 = e. Suppose that ei−1 is an idempotent of A/Ii−1. Pick any
element a ∈ A/Ii mapping onto ei−1, so that a2 − a ∈ Ii−1/Ii. Since (Ii−1)2 ⊆ Ii we
have (a2 − a)2 = 0 ∈ A/Ii. Put ei = 3a2 − 2a3. This does map to ei−1 ∈ A/Ii−1 and
we have

e2
i − ei = (3a2 − 2a3)(3a2 − 2a3 − 1)

= −(3− 2a)(1 + 2a)(a2 − a)2

= 0.

This completes the inductive definition, and if Ir = 0 we put f = er.
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Suppose that e is primitive and that f can be written f = f1 + f2 where f1 and
f2 are orthogonal idempotents. Then e = e1 + e2, where ei = fi + I, is also a sum of
orthogonal idempotents. Therefore one of these is zero, say, e1 = 0 ∈ A/I. This means
that f2

1 = f1 ∈ I. But I is nilpotent, and so contains no non-zero idempotent.

We will very soon see that in the situation of Theorem 3.5.5, if f is primitive, so is
e. It depends on the next result, which is a more elaborate version of Theorem 3.5.5.

Corollary 3.5.6. Let I be a nilpotent ideal of a ring A and let 1 = e1 + · · · + en be
a sum of orthogonal idempotents in A/I. Then we can write 1 = f1 + · · · + fn in A,
where the fi are orthogonal idempotents such that fi + I = ei for all i. If the ei are
primitive then so are the fi.

Proof. We proceed by induction on n, the induction starting when n = 1. Suppose that In class, do the
case n = 2.n > 1 and the result holds for smaller values of n. We will write 1 = e1+E in A/I where

E = e2 + · · ·+en is an idempotent orthogonal to e1. By Theorem 3.5.5 we may lift e1 to
an idempotent f1 ∈ A. Write F = 1−f1, so that F is an idempotent that lifts E. Now F
is the identity element of the ring FAF which has a nilpotent ideal FIF . The composite
homomorphism FAF ↪→ A → A/I has kernel FAF ∩ I and this equals FIF , since
clearly FAF ∩I ⊇ FIF , and if x ∈ FAF ∩I then x = FxF ∈ FIF , so FAF ∩I ⊆ FIF .
Inclusion of FAF in A thus induces a monomorphism FAF/FIF → A/I, and its
image is E(A/I)E. In E(A/I)E the identity element E is the sum of n− 1 orthogonal
idempotents, and this expression is the image of a similar expression for F + FIF in
FAF/FIF . By induction, there is a sum of orthogonal idempotents F = f2 + · · ·+ fn
in FAF that lifts the expression in FAF/FIF and hence also lifts the expression for
E in A/I, so we have idempotents fi ∈ A, i = 1, . . . , n with fi + I = ei. These fi
are orthogonal: for f2, . . . , fn are orthogonal in FAF by induction, and if i > 1 then
Ffi = fi so we have f1fi = f1Ffi = 0.

The final assertion about primitivity is the last part of Theorem 3.5.5.

Corollary 3.5.7. Let f be an idempotent in a ring A that has a nilpotent ideal I.
Then f is primitive if and only if f + I is primitive.

Proof. We have seen in Theorem 3.5.5 that if f+I is primitive, then so is f . Conversely,
if f + I can be written f + I = e1 + e2 where the ei are orthogonal idempotents of A/I,
then by applying Corollary 3.5.6 to the ring fAf (of which f is the identity) we may
write f = g1 + g2 where the gi are orthogonal idempotents of A that lift the ei.

3.6 Projective modules for finite dimensional algebras

We now classify the indecomposable projective modules over a finite dimensional al-
gebra as the projective covers of the simple modules. We first describe how these
projective covers arise, and then show that they exhaust the possibilities for indecom-
posable projective modules. We postpone explicit examples until the next section, in
which we consider group algebras.
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Theorem 3.6.1. Let A be a finite dimensional algebra over a field and S a simple
A-module.

(1) There is an indecomposable projective module PS with PS/RadPS ∼= S, of the
form PS = Af where f is a primitive idempotent in A.

(2) The idempotent f has the property that fS 6= 0 and if T is any simple module
not isomorphic to S then fT = 0.

(3) PS is the projective cover of S, it is uniquely determined up to isomorphism by
this property and has S as its unique simple quotient.

(4) It is also possible to find an idempotent fS ∈ A so that fSS = S and fST = 0 for
every simple module T not isomorphic to S.

Proof. Let e ∈ A/RadA be any primitive idempotent such that eS 6= 0. It is possible
to find such e since we may write 1 as a sum of primitive idempotents and some term in
the sum must be non-zero on S. Let f be any lift of e to A, possible by Corollary 3.5.6. Class: are these

true in general?
(A/RadA) · e ∼=
S? eS = S?

Then f is primitive, fS = eS 6= 0 and fT = eT = 0 if T 6∼= S since a primitive
idempotent e in the semisimple ring A/RadA is non-zero on a unique isomorphism
class of simple modules. We define PS = Af , an indecomposable projective module.
Now

PS/RadPS = Af/(RadA ·Af) ∼= (A/RadA) · (f + RadA) = S,

the isomorphism arising because the map Af → (A/RadA) · (f + RadA) defined by
af 7→ (af +RadA) has kernel (RadA) ·f . The fact that PS is the projective cover of S
is a consequence of Nakayama’s lemma, and the uniqueness of the projective cover was
dealt with in Proposition 3.5.3. Any simple quotient of PS is a quotient of PS/RadPS ,
so there is only one of these. Finally we observe that if we had written 1 as a sum of
primitive central idempotents in A/RadA, the lift of the unique such idempotent that
is non-zero on S is the desired idempotent fS . Class: justify

these various
statements. Did
(3) get proved?

Theorem 3.6.2. Let A be a finite dimensional algebra over a field k. Up to isomor-
phism, the indecomposable projective A-modules are exactly the modules PS that are
the projective covers of the simple modules, and PS ∼= PT if and only if S ∼= T . Each
projective PS appears as a direct summand of the regular representation, with multi-
plicity equal to the multiplicity of S as a summand of A/RadA. As a left A-module
the regular representation decomposes as

A ∼=
⊕

simpleS

(PS)nS

where nS = dimk S if k is algebraically closed, and more generally nS = dimD S where
D = EndA(S).

In what follows we will only prove that finitely generated indecomposable projective
modules are isomorphic to PS , for some simple S. For a finite dimensional algebra it
is the case that this accounts for all indecomposable projective modules.
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Proof. Let P be an indecomposable projective module and write

P/RadP ∼= S1 ⊕ · · · ⊕ Sn.

Then P → S1 ⊕ · · · ⊕ Sn is a projective cover. Now

PS1 ⊕ · · · ⊕ PSn → S1 ⊕ · · · ⊕ Sn

is also a projective cover, and by uniqueness of projective covers we have

P ∼= PS1 ⊕ · · · ⊕ PSn .

Since P is indecomposable we have n = 1 and P ∼= PS1 .
Suppose that each simple A module S occurs with multiplicity nS as a summand

of the semisimple ring A/RadA. Both A and
⊕

simpleS P
nS
S are the projective cover of

A/RadA, and so they are isomorphic. We have seen in Corollary ?? that nS = dimk S
when k is algebraically closed, and in Exercise ?? of Chapter 2 that nS = dimD S in
general.

Theorem 3.6.3. Let A be a finite dimensional algebra over a field k, and U an A-
module. Then U has a projective cover.

Again, we only give a proof in the case that U is finitely generated, leaving the
general case to Exercise ?? of this chapter.

Proof. Since U/RadU is semisimple we may write U/RadU = S1 ⊕ · · · ⊕ Sn, where
the Si are simple modules. Let PSi be the projective cover of Si and h : PS1 ⊕ · · · ⊕
PSn → U/RadU the projective cover of U/RadU . By projectivity there exists a
homomorphism f such that the following diagram commutes:

PS1 ⊕ · · · ⊕ PSn
f

↙
yh

U
g−→ U/RadU

.

Since both g and h are essential epimorphisms, so is f by Proposition 3.5.2. Therefore
f is a projective cover.

We should really learn more from Theorem 3.6.3 than simply that U has a projective
cover: the projective cover of U is the same as the projective cover of U/RadU .

3.7 Cartan invariants

If
0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

is any composition series of a module U , the number of quotients Ui/Ui−1 isomorphic
to a given simple module S is determined independently of the choice of composition
series, by the Jordan–Hölder theorem. We call this number the (composition factor)
multiplicity of S in U .
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Proposition 3.7.1. Let S be a simple module for a finite dimensional algebra A with
projective cover PS, and let U be a finite dimensional A-module.

(1) If T is a simple A-module then

dim HomA(PS , T ) =

{
dim EndA(S) if S ∼= T,

0 otherwise.

(2) The multiplicity of S as a composition factor of U is

dim HomA(PS , U)/dim EndA(S).

(3) If e ∈ A is an idempotent then dim HomA(Ae,U) = dim eU .

We remind the reader that if the ground field k is algebraically closed then dim EndA(S) =
1 by Schur’s lemma. Thus the multiplicity of S in U is just dim HomA(PS , U) in this
case.

Proof. (1) If PS → T is any non-zero homomorphism, the kernel must contain RadPS ,
being a maximal submodule of PS . Since PS/RadPS ∼= S is simple, the kernel must
be RadPS and S ∼= T . Every homomorphism PS → S is the composite PS →
PS/RadPS → S of the quotient map and either an isomorphism of PS/RadPS with
S or the zero map. This gives an isomorphism HomA(PS , S) ∼= EndA(S).

(2) Let
0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

be a composition series of U . We prove the result by induction on the composition
length n, the case n = 1 having just been established. Suppose n > 1 and that the
multiplicity of S in Un−1 is dim HomA(PS , Un−1)/dim EndA(S). The exact sequence

0→ Un−1 → U → U/Un−1 → 0

gives rise to an exact sequence

0→ HomA(PS , Un−1)→ HomA(PS , U)→ HomA(PS , U/Un−1)→ 0

by Proposition ??, so that

dim HomA(PS , U) = dim HomA(PS , Un−1) + dim HomA(PS , U/Un−1).

Dividing these dimensions by dim EndA(S) gives the result, by part (1).
(3) There is an isomorphism of vector spaces HomA(Ae,U) ∼= eU specified by

φ 7→ φ(e). Note here that since φ(e) = φ(ee) = eφ(e) we must have φ(e) ∈ eU . This
mapping is injective since each A-module homomorphism φ : Ae → U is determined
by its value on e as φ(ae) = aφ(e). It is surjective since the equation just written down
does define a module homomorphism for each choice of φ(e) ∈ eU .
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Again in the context of a finite dimensional algebra A, we define for each pair of
simple A-modules S and T the integer

cST = the composition factor multiplicity of S in PT .

These are called the Cartan invariants of A, and they form a matrix C = (cST ) with
rows and columns indexed by the isomorphism types of simple A-modules, called the
Cartan matrix of A.

Corollary 3.7.2. Let A be a finite dimensional algebra over a field, let S and T be
simple A-modules and let eS, eT be idempotents so that PS = AeS and PT = AeT are
projective covers of S and T . Then

cST = dim HomA(PS , PT )/ dim EndA(S) = dim eSAeT / dim EndA(S).

If the ground field k is algebraically closed then cST = dim HomA(PS , PT ) = dim eSAeT .

3.8 Projective and simple modules for SF (n, r)

To summarize from Theorem 3.3.3:

Corollary 3.8.1. The isomorphism classes of simple SF (n, r)-modules biject with the
isomorphism classes of indecomposable projective SF (n, r)-modules. These all have the
form Y \ = HomFSr(Y,E

⊗r) where Y is an indecomposable summand of E⊗r, and if
e ∈ SF (n, r) is projection onto Y in the direct sum decomposition then Y \ ∼= SF (n, r)e
as SF (n, r)-modules. The idempotent e is primitive. For idempotents e1 and e2 it
is the case that SF (n, r)e1

∼= SF (n, r)e2 as SF (n, r)-modules if and only if e1 and e2

are conjugate by a unit in SF (n, r), if and only if e1E
⊗r ∼= e2E

⊗r as FSr-modules.
The isomorphism classes of indecomposable projective SF (n, r)-modules biject with the
isomorphism classes of indecomposable summands of E⊗r.

For each partition λ of r with at most n parts and field F we have a Young mod-
ule Y λ for FSr, and a simple SF (n, r)-module T λ and an indecomposable projective
SF (n, r)-module Qλ = Y λ\ = SF (n, r)e where e is projection onto Y λ as a summand
of E⊗r..

Corollary 3.8.2. When R is a field the Cartan invariants of SR(n, r) are

cλµ = dim HomSR(n,r)(Q
λ, Qµ) = dim HomRSr(Y

µ, Y λ).

Corollary 3.8.3. Assume the only summands of the Mλ are Young modules. Then
the Cartan matrix of SF (n, r) is symmetric.

Proof. We saw in Theorem 2.4.2 that the Young modules are self-dual. Now

HomFSr(Y
µ, Y λ) ∼= HomFSr(Y

λ∗, Y µ∗) ∼= HomFSr(Y
λ, Y µ)

as vector spaces
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Example 3.8.4. Cartan invariants:

SF2(2, 2) [2] [12]

[2] 1 1
[12] 1 2

Theorem 3.8.5. Each simple module T λ is absolutely simple and the projective Qλ is
absolutely indecomposable for SF (n, r).

THE FOLLOWING ARGUMENT IS SURELY INADEQUATE, AND PROBA-
BLY INCORRECT. THE ARGUMENT ABOUT THE GALOIS GROUP FIXING
SUMMANDS SEEMS TO BE WHERE IT GOES WRONG.

Proof. These statements are equivalent to the statement that Y λ is absolutely indecom-
posable for FSr. If this were not the case there would be a finite degree field extension
K ⊇ F so that Y λ ⊗F K is the direct sum of various submodules. The Galois group
of K over F permutes these summands, which are all submodules of Mλ. Only one of
them can contain Sλ which is fixed by the Galois group, so the Galois group fixes the
summand containing Sλ, which is thus defined over F . It follows that there is, in fact,
only one summand.

Corollary 3.8.6. The dimension of the simple module T λ for SF (n, r) equals the
multiplicity of Qλ as a summand of SF (n, r), which equals the multiplicity of Y λ as a
summand of E⊗r as an FSr-module.

Should this
connect with
result 3.3.7?

We have already seen that, when n ≥ r, M [1r] ∼= FSr is a summand of E⊗r, and
so the summands of E⊗r as an SF (n, r)-module are projective modules Qλ, occurring
in E⊗r with multiplicities equal to the multiplicities of the Y λ in FSr. These Y λ are
the ones that happen to be projective, and the multiplicities are the dimensions of the
corresponding simple FSr-modules. Note that a projective Y λ does not usually have
the simple Dλ as its simple quotient. We have not proved it, but the λ for which Y λ

is projective are the partitions for which the conjugate partition λ′ is p-regular.

Theorem 3.8.7. If n ≥ r the map FSr → EndSF (n,r)(E
⊗r) is an isomorphism.

Proof. We know that E⊗r ∼= M [1r]\ as SF (n, r)-modules, so

EndSF (n,r)(E
⊗r) ∼= EndSF (n,r)(M

[1r]\) ∼= EndFSr(M
[1r])op

since \ is a contravariant equivalence of categories. Now M [1r] ∼= FSr, the regular
representation, and so EndFSr(M

[1r]) ∼= (FSr)
op. This shows that EndSF (n,r)(E

⊗r) ∼=
FSr. To see that the map is an isomorphism, we observe first that because M [1r] is
a summand of E⊗r and FSr acts faithfully on it, the map is a monomorphism. By
counting dimensions, it is an isomorphism.
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Corollary 3.8.8. If n ≥ r then the functors denoted \ provide inverse bijections be-
tween the isomorphism classes of indecomposable summands of E⊗r as a SF (n, r)-
module, and the indecomposable projective FSr-modules. The multiplicity of each in-
decomposable SF (n, r)-module as a summand of E⊗r equals the multiplicity of the cor-
responding indecomposable as a summand of FSr, namely the dimension of its simple
quotient.

Proof. Applying Theorem 3.3.3 to E⊗r as a SF (n, r)-module we have that the in-
decomposable summands of this module biject with the indecomposable projective
FSr-modules under \. However, these summands all have the form Y \, where Y is a
summand of the regular representation M [1r]. It follows that the correspondents un-
der \ of the summands of E⊗r as a SF (n, r)-module are precisely the indecomposable
projective FSr-modules.

3.9 Duality and the Schur algebra

The transpose of a linear map is familiar from elementary linear algebra as an operation
on matrices. We explain its connection to bilinear forms.

Let U, V be free R-modules with bases u1, . . . , um, v1, . . . , vn giving standard bilin-
ear forms 〈−,−〉U and 〈−,−〉V on U and V , respectively. If α : U → V is a linear map,
the transpose of α is the map ᾱ : V → U defined by 〈αu, v〉 = 〈u, ,̄v〉 for all u, v.

Example 3.9.1. If H ≤ K ≤ G are subgroups of finite index in G, the map of
permutation modules α : R[H/G] → R[K/G] specified by Hg 7→ Kg has transpose,
with respect to the standard bilinear forms on these permutation modules, specified by
Kg 7→

∑
Hx⊆K Hxg. Provided the cosets of H are ordered so that subsets of the same

coset Kg are grouped together, the matrix of the transpose has the form

1 1 1 · · ·
1 1 1 · · ·

· · ·

Proposition 3.9.2. Let Ω,Ψ be G-sets for a finite group G and let α : RΩ → RΨ be
an RG-module homomorphism between the permutation modules. Let ᾱ : RΨ→ RΩ be
the map that is the transpose of α with respect to the standard bilinear form determined
by the permutation bases of RΩ and RΨ. Then ᾱ is an RG-module homomorphism.

Proof. ᾱ is defined by 〈αω, ψ〉 = 〈ω, ᾱψ〉. Now

〈ω, ᾱgψ〉 = 〈αω, gψ〉
= 〈g−1αω, ψ〉
= 〈αg−1ω, ψ〉
= 〈g−1ω, ᾱψ〉
= 〈ω, gᾱψ〉
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for all ω, ψ and g. Because the form is non-degenerate, this shows that ᾱ is an RG-
module homomorphism.

We have now defined an antiautomorphism α 7→ ᾱ on SF (n, r). (It seems to depend
on the particular choice of permutation basis of E⊗r.) If U is an SF (n, r)-module, let
U◦ = HomR(U,R) with SF (n, r)-action given by (αf)(u) = f(ᾱu). Then U◦ is an
SF (n, r)-module.

Proposition 3.9.3. Let U, V be SF (n, r)-modules and let 〈−,−〉 : U × V → R be a
bilinear form.

1. The corresponding map U → V ◦ is a map of SF (n, r)-modules if and only if the
form satisfies 〈αu, v〉 = 〈u, ᾱv〉 for all u, v, α. Class: isn’t this

the definition of
ᾱ?2. Assuming the condition in (1) holds, if U1 ⊆ U and V1 ⊆ V are SF (n, r)-

submodules of U and V then U⊥1 ⊆ V , V ⊥1 ⊆ U are SF (n, r)-submodules also.

3. Assuming the condition in (1) holds and that the form is non-degenerate, U1 ↔
U⊥1 is an order-reversing binection between pure submodules of U and pure sub-
modules of V . Furthermore, U1

∼= (V/U⊥1 )◦ and U/U1
∼= (U⊥1 )◦ as SF (n, r)- Check this!

modules.

Proof. (1) The corresponding map is u 7→ (v 7→ 〈u, v〉). It is a map of SF (n, r)-
modules if and only if αu is sent to α(v 7→ 〈u, v〉), which equals v 7→ 〈u, ᾱv〉. Now
αu 7→ (v 7→ 〈αu, v〉) and these expressions are equal if and only if 〈αu, v〉 = 〈u, ᾱv〉 for
all u, v.

Proposition 3.9.4. When R is a field, U 7→ U◦ is a duality on SF (n, r)-modules.
It interchanges injective modules and projective modules, and sends simple modules to
simple modules.

Proposition 3.9.5. E⊗r ∼= (E⊗r)◦ as SF (n, r), FSr-bimodules. It follows that E⊗r is
injective as an SF (n, r)-module, as well as being projective.

Proof. Let 〈−,−〉 be the standard form on E⊗r with respect to a permutation ba-
sis. From the definition of the antiautomorphism we have 〈αu, v〉 = 〈u, ᾱv〉 always,
which was the condition in Proposition 3.9.3. Also 〈uπ, v〉 = 〈u, vπ−1〉, which was the
condition to get an FSr-isomorphism.

In general, we see that an SF (n, r)-module V is an image of E⊗r if and only if V ◦

is a submodule of (E⊗r)◦. As an instance of this we have the following.

Proposition 3.9.6. Symλ(E) ∼= STλ(E)◦ as SF (n, r)-modules, and is an injective
SF (n, r)-module. In particular, Symr(E) ∼= STr(E)◦ as SF (n, r)-modules, and is in-
jective.
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Proof. The symmetric power Symr(E) is E⊗r/X where X is the span of tensors

(· · · ⊗ u⊗ · · · ⊗ v ⊗ · · · )− (· · · ⊗ v ⊗ · · · ⊗ u⊗ · · · )

Now X = STr(E)⊥. Hence Symr(E) ∼= STr(E)◦ as SF (n, r)-modules, and is injective
because ST r(E) was shown to be projective. This does the case of λ = [r] and the case
of general λ can be deduced in a similar way.

Proposition 3.9.7. The simple SF (n, r)-modules V with eV 6= 0 are precisely the
simple SF (n, r)-modules that appear as submodules of E⊗r.

Should this be an
exercise?

Example 3.9.8. I am not sure if this should be here: (R4)⊗3 = 4M [3] ⊕ 12M [2,1] ⊕
4M [13] = 20S[3] ⊕ 21S[2,1] ⊕ 4S[13]. Example when

r = 2?



Chapter 4

Polynomial representations of
GLn(F )

We regard GLn(F ) as the group of n×n invertible matrices with entries in F . For each
i, j with 1 ≤ i, j ≤ n and n× n matrix g ∈Mn(F ) let ci,j(g) ∈ F be the (i, j)-entry of
g. We let AF (n) be the polynomial ring F [ci,j

∣∣ 1 ≤ i, j ≤ n]. When F is infinite we
may regard AF (n) as the algebra of polynomial functions on GLn(F ), or on Mn(F ).
It is a direct sum AF (n) =

⊕
n≥0AF (n, r) where AF (n, r) is the space of homogeneous

polynomials of degree r. A standard calculation shows that AF (n, r) has dimension(
n+r−1

r

)
.

Given a representation ρ : GLn(F ) → GLd(F ), let ρi,j : GLn(F ) → F be the
function that extracts the (i, j)-entry of the matrix ρ(g), g ∈ GLn(F ). When F is
infinite we say that ρ is a polynomial representation if ρi,j ∈ AF (n) for all 1 ≤ i, j ≤ d,
and it is polynomial of degree r if ρi,j ∈ AF (n, r) for all 1 ≤ i, j ≤ d. The matrix with
entries ρi,j is called the invariant matrix of the representation. The notions of being a Is there any

difference
between this
matrix and ρ?

polynomial representation, and being polynomial of degree r, are independent of choice
of basis.

Example 4.0.1. 1. ρ1(g) = (1) for all g in GLn(F ) is polynomial of degree 0;

2. ρdet(g) = (det g) for all g in GLn(F ) is polynomial of degree n;

3. ρ(g) = g for all g in GLn(F ) is polynomial of degree 1. It is the natural repre-
sentation on the space E of dimension n.

4. If g =

[
a b
c d

]
then ρ(g) = g ⊗ g =


aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd

 for all g in GL2(F ) is a

polynomial representation of degree 2. It is the representation on E⊗2.

5. If g =

[
a b
c d

]
then ρ(g) =

ad+ bc ac bd
2ab a2 b2

2cd c2 d2

 for all g in GL2(F ) is a polynomial

33
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representation of degree 2. It is the representation on ST2(E) using the basis
e1 ⊗ e2 + e2 ⊗ e1, e1 ⊗ e1, e2 ⊗ e2.

6. ρ(g) = ((det g)−1) is not a polynomial representation.

7. If g =

[
a b
c d

]
then ρ(g) =

[
1 1− ad+ bc
0 ad− bc

]
is a polynomial representation that

is not homogeneous. We check that if g′ =

[
a′ b′

c′ d′

]
then

[
1 1− det g
0 det g

] [
1 1− det g′

0 det g′

]
=

[
1 1− det g det g′

0 det g det g′

]
=

[
1 1− det gg′

0 det gg′

]
so that this is indeed a representation.

We say that a function T : GLn(F ) → Md(F ) is invariant (perhaps multiplicative
would be better?) if T (BC) = T (B)T (C) always holds. Let Ti,j : GLn(F )→ F be the
function that extracts the (i, j)-entry of the matrix obtained by applying T .

Example 4.0.2. We compute the invariant matrix and the ∆(ρi,j) for the representa-
tion ρ in example 7. The invariant matrix is[

1 1− c11c22 + c12c21

0 c11c22 − c12c21

]
Notices that this equals [

1 1
0 0

]
+

[
0 −c11c22 + c12c21

0 c11c22 − c12c21

]
and both of the matrices in this sum are multiplicative on GL2(F ). Evaluated on the
identity matrix they give [

1 0
0 1

]
=

[
1 1
0 0

]
+

[
0 −1
0 1

]
.

These matrices are orthogonal idempotents, with images

[
1
0

]
and

[
−1
1

]
. We compute

[
1 1− det g
0 det g

] [
1
0

]
=

[
1
0

]
and [

1 1− det g
0 det g

] [
−1
1

]
= det g

[
−1
1

]
so that the images of these idempotents are submodules for the action of GL2(F ). The

representation is seen to decompose as F

[
1
0

]
⊕ F

[
−1
1

]
∼= F ⊕ det.
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The polynomial functions AF (n) are an algebra under pointwise multiplication.
There is also a coproduct ∆ : AF (n)→ AF (n)⊗AF (n) defined on the algebra generators
ci,j as ∆(ci,j) =

∑n
k=1 ci,k ⊗ ck,j , so as to be an algebra homomorphism. Thus if B

and C are n × n matrices and f ∈ AF (n) we have ∆(f)(B,C) = f(BC), where
we interpret elements of AF (n) ⊗ AF (n) as functions GLn(F ) × GLn(F ) → F via
(f⊗g)(B,C) = f(B)g(C). There is also a mapping ε : AF (n)→ F given by evaluation
at the identity matrix: ε(c) = c(1).

Example 4.0.3. To illustrate how it works, we compute the effect of ∆ on one of the
matrix entries in the last example:

∆(ρ1,2) = Fill in calculation.

Lemma 4.0.4. 1. ∆(AF (n, r)) ⊆ AF (n, r)⊗AF (n, r).

2. AF (n) and AF (n, r) are coassociative coalgebras with coproduct ∆ and counit ε.

3. Let T : GLn(F ) → Md(F ) be a mapping whose coordinate functions Ti,j are
polynomial. Then T is multiplicative if and only if Ti,j(BC) = ∆(Ti,j)(B,C)
always holds.

Notice that, unlike the coproduct, the product on AF (n) does not preserve degree
of polynomials. In part 3, the evaluation of of ∆(T ) on the pair (B,C) comes about via
the homomorphism from AF (n)⊗AF (n) to functions GLn(F )×GLn(F )→ F . Given
f, f ′ ∈ AF (n) this homomorphism sends f ⊗ f ′ to the function (g, h) 7→ f(g)f ′(h).

Proof. These come from direct verifications using the definition of ∆. We verify the
coassociative law (1⊗∆)∆ = (∆⊗ 1)∆ by checking it on the generators ci,j and using
the fact that ∆ is an algebra homomorphism on AF (n). Thus

(1⊗∆)∆(ci,j) = (1⊗∆)
n∑
k=1

(ci,k ⊗ ck,j) =
n∑
k=1

(ci,k ⊗
n∑
q=1

(ck,q ⊗ cq,j))

and this takes the same value on triples of matrices as (∆⊗ 1)∆(ci,j) because of asso-
ciativity of matrix multiplication. Verify other laws.

Theorem 4.0.5 (Schur). Let F be an infinite field and let ρ : GLn(F ) → GL(V )
be a polynomial representation of GLn(F ). Then V =

⊕
k≥0 Vk as representations of

GLn(F ) where Vk is polynomial of degree k, and is characterized as the unique largest
submodule of V with this property.

The main conceptual idea behind the proof of this result is that the coalgebra A(n)
is the direct sum of the coalgebras A(n, r), so that the dual A(n)∗ is the direct sum of
algebras A(n, r)∗, whose identity elements are a set of central orthogonal idempotents.
Identifying the A(n, r)∗-modules as polynomial representations of degree r gives the
required decomposition. We have not yet made this identification, and present the
argument in a more elementary way.
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Proof. Let t be an indeterminate and write ρ(tg) = ρ0(g) + tρ1(g) + · · · + trρr(g) for
some r. Thus the coordinate functions (ρk)i,j lie in A(n, k) for each k. We claim that
each ρk is multiplicative. For this we show that ∆((ρk)i,j)(g, h) = (ρk)i,j(gh) always
holds and apply Lemma 4.0.4.

Putting t = 1 we have
ρ = ρ0 + ρ1 + · · ·+ ρr

as matrices of functions on GLn(F ), and in each coordinate we have

ρi,j = (ρ0)i,j + (ρ1)i,j + · · ·+ (ρr)i,j .

Applying ∆ we have

∆(ρi,j) = ∆((ρ0)i,j) + ∆((ρ1)i,j) + · · ·+ ∆((ρr)i,j).

Now ρ is multiplicative, so

ρi,j(tgh) = ∆ρi,j(tg, h)

= ∆(ρ0)i,j(tg, h) + ∆(ρ1)i,j(tg, h) + · · ·+ ∆(ρr)i,j(tg, h)

= ∆(ρ0)i,j(g, h) + t∆(ρ1)i,j(g, h) + · · ·+ tr∆(ρr)i,j(g, h)

the last equality arising because the functions that evaluate on tg in ∆(ρk)i,j(tg, h) ∈
AF (n, k) ⊗ AF (n, k) are homogeneous of degree k. From the definition of the ρk we
also have

ρi,j(tgh) = (ρ0)i,j(gh) + t(ρ1)i,j(gh) + · · ·+ tr(ρr)i,j(gh).

Comparing coefficients of tk in the two last expressions we obtain

∆((ρk)i,j)(g, h) = (ρk)i,j(gh),

as required. We deduce that ρk is multiplicative.
We now see that the matrices ek := ρk(1) are idempotent, because ρk(1)2 =

ρk(1
2) = ρk(1). Also

ρ(1) = ρ0(1) + ρ1(1) + · · ·+ ρr(1) = e0 + e1 + · · · er

shows that these idempotents sum to the identity endomorphism of V . This implies
that V is the sum of the subspaces ekV . For every g we have

ρ(t1g) = ρ(t1)ρ(g)

= (e0 + te1 + · · ·+ trer)ρ(g)

= e0ρ(g) + te1ρ(g) + · · ·+ trerρ(g)

= ρ0(g) + tρ1(g) + · · ·+ trρr(g)

= ρ(gt1)

= · · · = ρ(g)e0 + tρ(g)e1 + · · ·+ trρ(g)er.
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Equating coefficients of powers of t we find that ekρ(g) = ρ(g)ek = ρk(g), so the
idempotents ek commute with the matrices ρ(g). Thus each subspace ekV is preserved
by the action of GLn(F ), and an element g acts on a vector v = ekv ∈ ekV via the
matrix ρ(g)ek = ρk(g), a matrix whose entries are homogeneous polynomials of degree
k. It follows that ekV ∩

∑
i 6=k eiV = 0 since ρ(g) acts on this space by a matrix whose

entries are simultaneously polynomial of degree k, and also polynomial with no terms
of degree k. We have now shown that V =

⊕
k≥0 Vk where Vk = ekV , as required.

Our next goal is to show that, when F is infinite, the algebra homomorphism
FGLn(F )→ SF (n, r) is surjective, and that the representations of GLn(F ) that arise
from representations of SF (n, r) are precisely the polynomial representations of degree
r. To do this we will factorize the homomorphism as FGLn(F ) → Snew

F (n, r) →
SF (n, r) where Snew

F (n, r) is an algebra to be defined, that we will show is isomorphic
to SF (n, r).

We define Snew
F (n, r) := AF (n, r)∗, and this is an algebra, with multiplication and

unit defined as the dual of the comultiplication and counit of the coalgebra AF (n, r).
We have maps

GLn(F )×AF (n, r)→ F

and
Mn(F )×AF (n, r)→ F

given by evaluation (g, c) 7→ c(g) = eg(c). Thus eg ∈ Snew
F (n, r) := AF (n, r)∗. Write Change Γ back

to GLn(F ).Γ := GLn(F ) and let FΓ be the algebra of maps Γ → F . Any κ ∈ FΓ gives rise to a
linear map FΓ→ F , so that we have a bilinear form

FGLn(F )×AF (n, r)→ F

and the mapping e is defined so that the bilinear form is the composite

FGLn(F )×AF (n, r)
e×1−−→ Snew

F (n, r)×AF (n, r)→ F

where the second map is the natural perfect pairing.

Proposition 4.0.6. 1. Given any φ, θ ∈ AF (n, r)∗ their product φ · θ is given on
c ∈ AF (n, r) by (φ · θ)(c) = (φ⊗ θ)∆(c).

2. eg1 · eg2 = eg1g2.

3. e extends to an algebra homomorphism e : FGLn(F ) → Snew
F (n, r), written u 7→

eu, where if u =
∑

g∈Γ agg then eu =
∑

g∈Γ ageg.

Proof. 1. The multiplication on AF (n, r)∗ is the map µ : AF (n, r)∗ ⊗F AF (n, r)∗ →
AF (n, r)∗ dual to ∆ : AF (n, r) → AF (n, r) ⊗F AF (n, r) with respect to the natural
pairings between these spaces. This means that µ(φ⊗ θ)(c) = (φ⊗ θ)∆(c).

2. We have (eg1 · eg2)(c) = (eg1 ⊗ eg2)∆(c) by part 1, and this equals c(g1g2) from
the definition of ∆. From the definition of the evaluation map, c(g1g2) = eg1g2(c) and Explain more.
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this completes the proof.
3. is immediate from 2, since the only thing at issue is the multiplicativity of the

map.

Proposition 4.0.7. Let F be an infinite field.

1. The algebra homomorphism e : FGLn(F )→ Snew
F (n, r) is surjective.

2. Let Y = Ker e and f ∈ FΓ. Then f ∈ AF (n, r) if and only if f(Y ) = 0. Which
implication is
easy?Proof. 1. If e(FGLn(F )) 6= Snew

F (n, r) then it is a proper linear subspace, and there is
a nonzero polynomial function c ∈ AF (n, r) perpendicular to Im(e) under the pairing.
Since Im(e) is the span of all eg this means that eg(c) = c(g) = 0 for all g ∈ GLF (n, r). Explain that

c(eg) = c(g).Because F is infinite, a polynomial c that is zero everywhere in its domain, when
regarded as a function, must be zero. Thus no such c can exist and e is surjective.

2. To prove the implication in the direction left to right, let u ∈ Ker e and let f ∈
AF (n, r). Then eu(f) = f(u) = 0, so that f(Y ) = 0. For the other direction, suppose
that f(Y ) = 0. Since Snew

F (n, r) ∼= FΓ/Y , f defines a function f1 : Snew
F (n, r) → F

given by f1(eg) = f(g). Since the pairing Snew
F (n, r)× AF (n, r) → F is perfect, it has

the form f1(φ) = φ(c) for some C ∈ AF (n, r). Now c and f take the same values on Γ,
because if g ∈ Γ then f(g) = f1(eg) = eg(c) = c(g). Hence f = c.

Corollary 4.0.8. Let F be an infinite field.

1. Let σ : Snew
F (n, r) → EndF (V ) be a representation of Snew

F (n, r). Then the com- Class: how many
lines do you think
it would take to
prove this?

posite ρ : FGLn(F )
e−→ Snew

F (n, r)
σ−→ EndF (V ) is a polynomial representation of

degree r.

2. Every polynomial representation of GLn(F ) of degree r is isomorphic to a repre-
sentation FGLn(F )

e−→ Snew
F (n, r)

σ−→ EndF (V ) for some σ.

In this sense, the representations of Snew
F (n, r) are the same as the polynomial repre-

sentations of GLn(F ) of degree r.

Proof. 1. For each pair (i, j) the function ρi,j vanishes on the kernel Y of e and so is
polynomial of degree r by Proposition 4.0.7.

2. Suppose that V is a polynomial representation of GLn(F ) of degree r. Then by
Proposition 4.0.7 again we have ρi,j(Y ) = 0 for all i, j, so ρ arises as a representation
of Snew

F (n, r) as claimed.

Corollary 4.0.9. Let F be an infinite field. The representation

FGLn(F )→ SF (n, r) = EndFSr(E
⊗r)

factors as
FGLn(F )

e−→ Snew
F (n, r)→ SF (n, r).

Class: Is the map
Snew → S
uniquely specified
by this, or not?
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Proof. The representation of GLn(F ) on E⊗r is given by the r-fold tensor product of
the natural representation on E, and so is polynomial of degree r.

It was shown by Benson and Doty in [1] that the ring homomorphism FGLn(F )→
EndFSr(E

⊗r) is surjective provided that the number of elements of F is strictly greater
than r.

4.0.1 Multi-indices

Our next goal is to prove that Snew
F (n, r) is isomorphic to SF (n, r). Before doing this

we describe some properties of multi-indices. A multi-index of length r on n symbols is
a list (i1, i2, . . . , ir) of length r, where each ij can be any of the n symbols. Let I(n, r)
be the set of such multi-indices. There is an action of the symmetric group Sr from
the right on I(n, r) given by permuting the positions of symbols. For example,

(1, 1, 4, 3)(1, 2, 3) = (1, 1, 4, 3)(1, 2)(1, 3) = (4, 1, 1, 3).

When the set of n symbols is {1, . . . , n} each multi-index determines a weak composition
λ = (λ1, λ2, . . .) of r where λi is the number of occurrences of i in the list, that is, a list
of non-negative integers that sum to r. We say that λ is the content of the multi-index.
For example, the multi-index (1, 1, 4, 3) has content λ = (2, 0, 1, 1).

Lemma 4.0.10. Let E be a vector space of dimension n. There are bijections

I(n, r)↔ basis vectors for E⊗r

I(n, r)/Sr ↔ certain summands Mλ of E⊗r as an FSr-module

(I(n, r)× I(n, r))/Sr ↔ monomials of degree r in the ci,j , 1 ≤ i, j ≤ n

For example, the multi-index i = (1, 1, 4, 3) corresponds to the basis vector ei =
e1 ⊗ e1 ⊗ e4 ⊗ e3 of E⊗4, and its content λ = (2, 0, 1, 1) corresponds to the summand
M (2,0,1,1) spanned by e1⊗e1⊗e4⊗e3, e1⊗e1⊗e3⊗e4, e1⊗e4⊗e1⊗e3 and three other
basic tensors. The pair of multi-indices (1, 1, 4, 3), (2, 1, 2, 3)) determines the monomial
c1,2c1,1c4,2c3,3 and, since this equals c4,2c1,1c3,3c1,2 (for example) it is also determined
by the pair of multi-indices ((4, 1, 3, 1), (2, 1, 3, 2)).

The algebra Snew
F (n, r) has a basis dual to the ci,j := ci1,j1 · ci2,j2 · · · cir,jr , denoted

ξi,j. We have ξi,j = ξa,b if and only if there exists π ∈ Sr with i = aπ and j = bπ.

Proposition 4.0.11. The action of Snew
F (n, r) on E⊗r is given by

1. ξ(ei) =
∑

k ξ(ck,i)ek for all ξ ∈ Snew
F (n, r).

2.
ξa,b(eb) =

∑
k∈a·StabSr (b)

ek

and ξa,b(ei) = 0 if i 6∈ bSr.
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We do not need the hypothesis that F be an infinite field in the next result.

Theorem 4.0.12. The algebra homomorphism Snew
F (n, r) → SF (n, r) is an isomor-

phism.

Proof. We have seen that SF (n, r) has a basis acting on E⊗r in exactly the same way
as the ξa,b.

I think this refers
to result 3.2.2 for
this basis. Make
this explicit.

Theorem 4.0.13. Let ρ : FGLn(F ) → SF (n, r) be the homomorphism that expresses
E⊗r as a representation of GLn(F ) The representations of GLn(F ) obtained from
representations of SF (n, r) via ρ are precisely the polynomial representations of GLn(F )
of degree r.

Corollary 4.0.14. Let F be a field of characteristic zero. The polynomial represen-
tations of GLn(F ) are semisimple. The simple polynomial representations of degree r
are parametrized by the partitions of r with at most n parts. Thus, when n ≥ r, the
simple polynomial representations of degree r are parametrized by the partitions of r.

Corollary 4.0.15. Over an infinite field F , the number of simple polynomial repre-
sentations of GLn(F ) of degree r is at least the number of partitions of r with ≤ n
parts. The representations ST λ(E) are projective in the category of polynomial rep-
resentations, and every indecomposable projective is a summand of one of these. The
Symλ(E) are injective in this category and every indecomposable injective is a sum-
mand of one of these. The space E⊗r is both projective and injective and contains all
indecomposable projectives as submodules.

4.1 Weights and Characters

Let T ≤ GLn(F ) be the subgroup of diagonal matrices τ = diag(t1, . . . , tn). The
character group of T is the set X(T ) of algebraic group homomorphisms T → F×.

Proposition 4.1.1. The elements of X(T ) have the form χλ where λ ∈ Zn and
χλ(diag(t1, . . . , tn)) = tλ11 · · · tλnn .

There is a binary operation on X(T ), written additively, given by multiplication
within F×: if χ1, χ2 ∈ X(T ) then (χ1 + χ2)(t) := χ1(t)χ2(t).

Proposition 4.1.2. We have χλ1 + χλ2 = χλ1+λ2, so that X(T ) ∼= Zn as abelian
groups.

As before, let I(n, r) denote the set of multi-indices of length r on n symbols, so
that I(n, r)/Sr is in bijection with the set Λ(n, r) of (weak) compositions of r with at
most n parts. We identify Λ(n, r) = I(n, r)/Sr and call the elements weights. Each
λ ∈ Λ(n, r) determines an element χλ of X(T ), called a character.

The Weyl group W ∼= Sn of GLn(F ) acts on I(n, r) from the left as

w(i1, . . . , in) = (w(i1), . . . , w(in))
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and this action commutes with the action of Sr from the right, so the action of W
passes to an action on Λ(n, r).

Example 4.1.3. The multi-index (2, 2, 1, 4, 2, 1) determines a composition (2, 3, 0, 1)
which is the the same for all multi-indices in the right orbit of S6. Letting S4 act from
the left, it is in the same orbit as (1, 1, 2, 3, 1, 2) via the permutation (1, 2)(3, 4). This
multi-index determines the partition (3, 2, 1, 0), which is the image of (2, 3, 0, 1) under
this permutation.

We call the weight λ = (λ1, . . . , λn) dominant if λ1 ≥ · · · ≥ λn which is the same as
saying that λ is a partition. Each W -orbit on the weights contains a unique dominant
weight. We write Λ(n, r)+ for the set of dominant weights of GLn(F ) of degree r.

Let V be a polynomial representation of GLn(F ) and let λ ∈ Λ(n) be a weight. We
define the weight space

V λ = {v ∈ V
∣∣ τv = χλ(τ) · v for all τ ∈ T}.

We say that λ is a weight of V if V λ 6= 0. Since these weight spaces are common
eigenspaces and V has finite dimension, V has only finitely many weights.

Example 4.1.4. When V is the trivial module for GLn(F ), every element of T acts
via λ = (0, 0, . . .) = 0 so V = V (0,0,...).

Example 4.1.5. When V is the natural representation with basis e1, . . . , en and λ = Class: how many
weights are
there?

(0, 0, . . . , 0, 1, 0 . . .) with 1 in position i then V λ = Fei. These are the only weight
spaces, and V is their direct sum. We see that the multi-index (i) – merely an index
in this case – corresponds to the basis vector ei and determines the composition λ. We
also see that the weights are in a single orbit under the action of W .

Example 4.1.6. The exterior power V =
∧r(E) is a vector space with basis the

symbols ei1 ∧ · · · ∧ eir where i1 < · · · < ir. A wedge of r vectors satisfies linearity in
each variable and skew-symmetry. We see that each wedge ei1 ∧· · ·∧eir spans a weight
space of V with weight λ, where λj = 1 if j ∈ {i1, . . . , ir} and otherwise λj = 0. These
weights form a single W -orbit, and the dominant weight in this orbit is [1r].

Proposition 4.1.7. Let V be a polynomial representation of degree r.

1. If λ is a weight of V then λ has degree r.

2. If π ∈ W then V πλ = πV λ and as vector spaces V λ and V πλ have the same
dimension.

Proof. 1. The diagonal subgroup T acts via matrices all of whose entries are polynomial
of degree r. On V λ each τ ∈ T acts as a scalar that is polynomial of degree r in the
entries and so λ must be a composition of r.

2. Let v ∈ V λ and τ ∈ T . Then τπv = π(π−1τπ)v and if τ = diag(t1, . . . , tn) then

π−1τπ = diag(tπ1, . . . , tπn. This acts on V λ as tλ1π1 · · · tλnπn = t
λπ−11
1 · · · tλπ−1n

n = χπλ(τ).
This shows that V πλ is preserved by τ , and that V πλ = πV λ.
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Recall the elements ξi,j ∈ SF (n, r) dual to the ci,j. For each i, j ∈ I(n, r) we have
ξi,i = ξj,j if and only if j = iπ for some π ∈ Sr, and so if λ = i · Sr ∈ Λ(n, r) it is
well-defined to write ξλ instead of ξi,i if i ∈ λ.

As an example, the multi-index {i = (2, 1, 5, 4, 4) determines the composition λ =
(1, 1, 0, 2, 1) and the summand M (1,1,0,2,1) of E⊗r, which is the span of vectors such as
e2 ⊗ e1 ⊗ e5 ⊗ e4 ⊗ e4 = ei and the other tensors with the same content. According to
Proposition 4.0.11, ξi,iei =

∑
j∈i Stab(i)ej = ei, from which it follows that ξi,i = ξλ is The summation

index may be
wrongthe identity on Mλ, and the same proposition shows that ξi,iej = 0 if j is not in the

same Sr-orbit as ei. This proves the first part of the next proposition.

Proposition 4.1.8. 1. Let λ ∈ I(n, r). Then ξλ is projection onto the summand
Mλ of E⊗r.

2. In the Schur algebra, 1 =
∑

α∈Λ(n,r) ξα is a sum of orthognal idempotents.

3. If V is any polynomial representation of degree r then V =
⊕

α∈Λ(n,r) ξαV .

4. For each τ = diag(t1, . . . , tn) ∈ T its image in SF (n, r) is

eτ =
∑

α∈Λ(n,r)

tα1
1 · · · t

αn
n ξα.

Proof. 1. follows from the argument just before the proposition.
2. follows from 1. because the distinct ξα are orthogonal, and their sum acts as the

identity on E⊗r.
3. This decomposition follows from 2.
4. From the definition of the action, eτ ∈ SF (n, r) acts on E⊗r the way τ does. We

see that τ acts on each basis element ei of Mα = ξαE
⊗r as scalar multiplication by

tα1
1 · · · tαnn , so eτ acts on ξαE

⊗r in this way. The result follows. We may also evaluate
each side of the formula on ci,j to obtain this result.

Theorem 4.1.9. Let V be a polynomial representation of degree r. Then

V =
⊕

α∈Λ(n,r)

V α

is the direct sum of its weight spaces.

Proof. Because τ acts on ξαV as multiplication by tα1
1 · · · tαnn we have ξαV ⊆ V α.

However, V α ∩
∑

β 6=α V
β = 0 and this forces the result.

Corollary 4.1.10. The diagonal subgroup T acts semisimply on every polynomial rep-
resentation of GLn(F ).

Proof. We see that any polynomial representation V is the direct sum of spaces on
which elements of T act as scalar multiplication, each of which is a direct sum of
one-dimensional subspaces preserved under the action of T .
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Proposition 4.1.11. 1. Let 0 → V1 → V → V2 → 0 be a short exact sequence of
SF (n, r)-modules. Then for all weights α we have that 0→ V α

1 → V α → V α
2 → 0

is exact.

2. Let V and W be polynomial representations of GLn(F ) of degrees r and s. Then
V ⊗F W is a polynomial representation of degree r+ s and if γ ∈ Λ(n, r+ s) then

(V ⊗W )γ =
⊕

α+β=γ

V α ⊗F W β.

3. If L ⊇ F is a field extension and V is an SF (n, r)-module then the SL(n, r)-
module L⊗F V has (L⊗F V )α = L⊗F V α.

Proof. 1. arises because of the semisimplicity of the action of T and the fact that if
V →W is a homomorphism of SF (n, r)-modules then it restricts to a map V α →Wα

for every weight α. Writing V =
⊕

α V
α it means that the short exact sequence is a

direct sum of sequences ⊕
α

(0→ V α
1 → V α → V α

2 → 0).

Since the whole sequence is exact, each of the summands must be exact.
2. The direct sum decompositions of V and W into weight spaces tensor into the

direct sum decomposition shown, and if T acts as scalar multiplication on V α and W β

via weights α, β, then it acts on V α⊗F V β as scalar multipliction, via the weight α+β.
3. The idempotents ξα SF (n, r) and SL(n, r) may be identified, because they have

the same definition in both cases. We see that (L⊗F V )α = ξα(L⊗F V ) = L⊗F ξαV =
L⊗F V α.

If V is an SF (n, r)-module its formal character is

ΦV (X1, . . . , Xn) =
∑

α∈Λ(n,r)

dimV αXα1
1 · · ·x

αn
n .

Example 4.1.12. When V = F is the trival module, so V = V (0,0,0,...) we have ΦV = 1.
If V is the natural representation Fn then ΦV = X1 + · · ·+Xn.
If V =

∧r(E) then ΦV =
∑

J⊆{1,...,n},|J |=r(
∏
j∈J Xj) is the rth elementary sym-

metric function.

Proposition 4.1.13. 1. ΦV is symmetric. In fact,

ΦV =
∑

λ∈Λ+(n,r)

mλ(X1, . . . , Xn)

where mλ is the monomial symmetric function, the sum of the orbit of Xλ1
1 · · ·Xλn

n

under W .
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2. If 0 → V1 → V → V2 → 0 is a short exact sequence of SF (n, r)-modules then
ΦV = ΦV1 + ΦV2.

3. If V and W are polynomial representations then ΦV⊗W = ΦV · ΦW .

4. If L ⊇ F is a field extension then ΦL⊗FV = ΦV .

Corollary 4.1.14. The additive subgroup of Z[X1, . . . , Xn] generated by the ΦV , where
V is polynomial of degree r, is the space of all symmetric functions of degree r.

Proof. It contains all products of elementary symmetric functions of degree r.

For a polynomial representation of degree r and an element g ∈ GLn(F ) we now
define φV (g) = Trace ρ(g) ∈ F . Thus φV = Trace(ρi,j) ∈ A(n, r) is a polynomial
function that is the trace of the invariant matrix of ρ and because of this we see that
it is independent of any choice of basis. The same is not so immediately clear for the
formal character ΦV .

Theorem 4.1.15. Let V be a polynomial representation of degree r. Then φV (g) =
ΦV (ζ1, . . . , ζn) where ζ1, . . . , ζn are the eigenvalues of g in some suitable field extension
of F , taken with multiplicities according to their generalized eigenspaces.

It does not matter in which order we take ζ1, . . . , ζn since ΦV is symmetric.

Proof. Both φV and ΦV are unchanged under field extension, and so we may assume
the field F is algebraically closed.

If g ∈ GLn(F ) is a diagonlizable element then there is a basis of the natural module
with respect to which g is diagonal. There is now a base change matrix sending this
basis to the standard basis and hence an element z ∈ GLn(F ) so that zgz−1 ∈ T . The
eigenvalues of g and zgz−1 are the same, and so φV (g) = φV (zgz−1) = ΦV (ζ1, . . . , ζn),
since the formula is clearly true for elements of T .

Now the diagonalizable elements contain the elements with distinct eigenvalues,
and these form a dense subset of GLn(F ) (namely, the points where the discriminant
of the characteristic polynomial of the invariant matrix is nonzero). It follows that
φV (g) = ΦV (ζ1, . . . , ζn) for all g ∈ GLn(F ).

What is wrong
with the
argument given
to prove the
theorem?

In his notes, Green adopts the following line of argument to prove the last theorem.
Let C = (ρi,j) be the invariant matrix of ρ, let u be an indeterminate, and put

det(uI − C) = un − f1u
n−1 + · · · ± f0

in A(n, r), so that fs = ±φ∧s V = es is the degree s elementary symmetric function.
We have fs(g) = es(ζ1, . . . , ζn). We may write ΦV =

∑
µ bµe

µ1
1 · · · e

µr
r for some bµ ∈

Z. Put ψ =
∑

µ bµf
µ1
1 · · · f

µr
r ∈ A(n, r). Now ΦV (ζ1, . . . , ζn) = ψ(g). If zgz−1 =

diag(ζ1, . . . , ζn) acts via the weight spaces V =
⊕
V α then each V α contributes dimV α

terms ζα1
1 · · · ζαnn and φV (g) = φV (zgz−1) = ΦV (ζ1, . . . , ζn). We deduce that ψ = φV

on all diagonalizable elements, and hence on all g ∈ GLn(F ), since the diagonalizable
elements are dense.
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Theorem 4.1.16 (Frobenius and Schur). Let V1, . . . , Vt be absolutely simple, non-
isomorphic, finite dimensional representations of an algebra A over a field F . Take

bases for V1, . . . Vt, giving coordinate functions f
(k)
ij : A → F , 1 ≤ k ≤ t. Then the

functions f
(k)
ij are linearly independent.

Note that Vi is absolutely simple if and only if EndA(Vi) = F .

Proof. Consider the homomorphism A→ EndF (V1⊕ · · · ⊕Vt) given by the representa-
tion on the direct sum. Its image is a finite dimensional algebra A1, and as A1-modules
V1, . . . , Vt are also absolutely simple and non-isomorphic. It suffices to replace A by
A1 in the argument. Now Rad(A1) · Vi = 0 for all i, and since A1 acts faithfully on
V1 ⊕ · · · ⊕ Vt we get Rad(A1) = 0 and A1 is semisimple. Again because the action
is faithful, V1, . . . , Vt is a complete set of simple modules. Each simple component
of A1 is a matrix algebra Mni(EndA1(Vi)) where ni = dimEnd(Vi) Vi. It follows that
A1 = EndF (V1⊕· · ·⊕Vt). From this we see that the coordinate functions are indepen-
dent.

Corollary 4.1.17. Let Φ1, . . . ,Φt be the formal characters of a set of mutually non-
isomorphic, absolutely simple SF (n, r)-modules V1, . . . , Vt. Then Φ1, . . . ,Φt are linearly
independent elements of the ring of symmetric polynomials.

Proof. By the Frobenius-Schur Theorem 4.1.16, the natural characters φ1, . . . , φt of
V1, . . . , Vt are linearly independent elements of A(n, r). The Φ1, . . . ,Φt determine the
φ1, . . . , φt by Theorem 4.1.15 and so they must be independent also. To put this in
symbols, suppose that a1Φ1 + · · · + atΦt = 0 is a nonzero linear relation with ai ∈ Z.
In case the characteristic p of F is finite, we may suppose that p does not divide all
the ai. It follows from Theorem 4.1.15 that (a11F )φ1(g) + · · ·+ (at1F )φt(g) = 0 for all Class: Why?

g ∈ GLn(F ), so that φ1, . . . , φt are linearly dependent in A(n, r), a contradiction.

Lemma 4.1.18. Let E ⊃ F be a field extension of finite degree and let A be an F -
algebra. Let U and V be A-modules. Then

E ⊗F HomA(U, V ) ∼= HomE⊗FA(E ⊗F U,E ⊗F V )

via an isomorphism λ⊗F f 7→ (µ⊗F u 7→ λµ⊗F f(u)).

Proof. See the homework exercises. The exercise about this is Chapter 9 Exercise 16
from page 190 of my book.

Theorem 4.1.19. 1. Let µ be a partition of r. The character of

µ∧
E = ∧µ1E ⊗ ∧µ1E ⊗ · · ·

is eµ1eµ2 · · · and has leading term Xµ′ = X
µ′1
1 X

µ′2
2 · · · , where µ′ is the conjugate

partition of µ.
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2. For all λ ∈ Λ+(n, r) there is an absolutely irreducible module LF (λ) whose formal
character Φλ,F has leading term Xλ1

1 Xλ2
2 · · ·

3. The Φλ,F where λ ∈ Λ+(n, r) are a Z-basis for the symmetric polynomials of
degree r.

4. Every irreducible SF (n, r)-module is isomorphic to LF (λ) for exactly one λ ∈
Λ+(n, r).

Corollary 4.1.20. Let F,K be two infinite fields of the same characteristic. Then
Φλ,F = Φλ,K .

Corollary 4.1.21. The decomposition map is surjective.

Still needed: the simple modules for SF (n, r) are parametrized by the λ ∈ Λ+(n, r)
for every field F (not just infinite fields). The are all absolutely simple. Conclude that
the Young modules are all the summands of the Mλ as FSr-modules, and that the Y λ

are absolutely indecomposable.



Chapter 5

Connections between the Schur
algebra and the symmetric
group: the Schur functor

We have already been using two functors between left S(n, r)-modules and right FSr-
modules, both called \. From the equivalence of categories between projective SF (n, r)-
modules and direct sums of summands of E⊗r as an FSr-module we obtain the following
result. It is amazing that we prove it as a consequence of a substantial development of
ideas to do with representations of GLn(F ).

Theorem 5.0.1. Let F be any field.

1. The Young modules Y λ for FSr are a complete set of isomorphism types of the
indecomposable summands of the permutation modules Mµ. The Young modules
are absolutely indecomposable.

2. The simple modules for the Schur algebra SF (n, r) are parametrized by the parti-
tions in Λ+(n, r) and are absolutely simple.

Proof. Over any infinite field K the simple SK(r, r)-modules are the L(λ), parametrized
by λ ∈ Λ+(r, r). It follows that over F the number of isomorphism types of simple
SF (r, r) modules is at most the number of partitions of r. This is because if V1, V2

are non-isomorphic simple SF (n, r) modules and K is an infinite field, separable as an
extension of F , then K ⊗F V1 and K ⊗F V2 have no simple component in common,
because they are semisimple and by Lemma 4.1.18. On the other hand we know by the
fact that the number of non-isomorphic Young modules equals the number of partitions
of r that there are at least that number of simple SF (r, r)-modules. It follows that
SF (r, r) has simple modules parametrized by Λ+(r, r) over any field F , and further
more that they are absolutely simple, because on extending by any separable field
extension, if any simple is no longer simple then more simple composition factors are
introduced.

47
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We deduce at the same time that, over any field F , the Mµ have no more isomor-
phism types of indecomposable summands than the Y λ since these isomorphism types
biject with the simple SF (r, r)-modules. It also follows that the Y λ are absolutely in-
decomposable, or equivalently that EndF (Y λ)/Rad EndF (Y λ) ∼= F , since this quotient
is isomorphic to the endomorphism ring of the corresponding simple SF (r, r) module.
We deduce, finally, that the simple SF (n, r)-modules biject with Λ+(n, r), since this set
parametrizes the isomorphism types of indecomposable summands of E⊗r always.

There are various functors from SR(n, r)-modules to RSr-modules. The basic rela-
tionship between SR(n, r) and RSr is that there is an idempotent ξ ∈ SR(n, r) so that
RSr ∼= ξSR(n, r)ξ. We first consider such a situation in abstract.

Proposition 5.0.2. Let B be a ring containing and idempotent e.

1. If V is a left B-module then eV ∼= HomB(Be, V ) ∼= eB⊗B V as left eBe-modules.

2. eBe ∼= EndB(Be)op as rings.

Proof. (1) We have eV ∼= HomB(Be, V ) via inverse maps v 7→ φv, where φv(be) =
bev, and θ(e) ← θ. The first is a map of left eBe-modules since exev 7→ φexev, and
φexev(be) = beexev and (exeφv)(be) = φv(beexe) = beexev. Thus φexev = (exe)φv.

We also have an isomorphism eV ∼= eB ⊗B V given by inverse maps ev 7→ e⊗B ev
and ebv ← eb⊗B v, which are again maps of eBe-modules.

(2) Taking V = Be in part (1) we get eV = eBe = HomB(Be,Be) as left eBe-
modules, and under this isomorphism, b 7→ φb where φb : Be → Be is φb(xe) = exb.
Now φbφc(xe) = φb(xec) = xecb = φcb(xe) and so φbφc = φcb. Thus we have a ring
isomorphism of eBe with EndB(Be)op.

Part (2) of the last result says that, in the generality considered there, the three
functors V 7→ eV , HomB(Be,−) and eB ⊗B − are all isomorphic.

In the case of the Schur algebra and the group ring of the symmetric group the
idempotent ξ arises as projection onto a summand of E⊗r. The general setup of this
kind is that we have a summand Y of a module E and let

e = ip : E p−→ Y
i−→ E

denote the endomorphism of E that is projection onto Y . Recall that we take the
convention that morphisms are applied from the left.

Proposition 5.0.3. Let A be a ring, let E be a right A-module and put B = EndA(E),
so that E is a left B-module. Let Y be a summand of E as an A-module and let e ∈ B
be the idempotent that is projection onto Y .Then

1. Y ∼= eE as right A-modules.

2. eBe ∼= EndA(Y ) as rings.
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Proof. (1) This is immediate from the definition.
(2) The isomorphism is φ 7→ iφp with inverse pθi← θ.

We now apply this result in the context of the Schur algebra. The isomorphisms
work more generally than over a field, so we let R be a commutative ring with 1. By
an SR(n, r)-lattice or an RSr-lattice we mean a module for this ring that is finitely
generated and projective as an R-module. Suppose that n ≥ r. We take for e the Change F to R

in what follows.idempotent ξ = ξ(1,...,1,0,...,0) in SF (n, r) that projects E⊗r onto the weight space ξE⊗r =

(E⊗r)[1r] = M [1r]. The Schur functor may be viewed as the functor SF (n, r) -mod →
ξSF (n, r)ξ -mod given by U 7→ ξU . We will also see that ξSF (n, r)ξ ∼= RSr so that
the Schur functor becomes a functor SF (n, r) -mod → RSr -mod. These two module
categories are both categories of left modules, and the Schur functor is covariant. We
will see that it can also be expressed in terms of the contravariant natural functor \
introduced previously.

Proposition 5.0.4. Suppose that n ≥ r and let ξ = ξ(1,...,1,0,...,0) be the idempotent in

SF (n, r) that projects E⊗r onto the weight space ξE⊗r = (E⊗r)[1r] = M [1r]. We have
isomorphisms as follows.

1. ξSF (n, r)ξ ∼= EndRSr(ξE
⊗r) ∼= EndSF (n,r)(SF (n, r)ξ)op as rings.

2. ξE⊗r ∼= RSr as right RSr-modules.

3. EndRSr(ξE
⊗r) ∼= RSr as rings.

4. ξSF (n, r)ξ ∼= RSr as rings.

5. E⊗r ∼= SF (n, r)ξ as (SF (n, r), RSr)-bimodules.

Proof. (1) These isomorphisms are part (1) of Proposition 5.0.2 and Proposition 5.0.3,
translated to the present context.

(2) The weight space ξE⊗r is generated as an RSr module by the basic tensor
e1⊗ e2⊗· · ·⊗ er and so has a permutation basis permuted regularly by Sr, from which
the isomorphism follows.

(3) is immediate from (2) using a standard identification of the endomorphism
ring of the regular representation. Since we follow the convention that morphisms
are applied from the left, we do not take an opposite ring in this isomorphism. A
specific isomorphism may be obtained by letting an element y ∈ RSr correspond to the
endomorphism φy of ξE⊗r specified by φy(e1 ⊗ · · · ⊗ er · z) = e1 ⊗ · · · ⊗ er · yz.

(4) comes by combining (3) and (1).
(5) In the first place SF (n, r)ξ is a right ξSF (n, r)ξ-module, but we interpret it as a

right RSr-module using the isomorphism of (4). Taking SF (n, r) as EndRSr(E
⊗r) the

subset SF (n, r)ξ is isomorphic to HomSr(ξE
⊗r, E⊗r) via an isomorphism that associates

θξ 7→ θi where ξ = i ◦ p is the factorization as projection followed by inclusion of the
summand ξE⊗r. By (2) this is isomorphic to HomRSr(RSr, E

⊗r) ∼= E⊗r. We check
that these isomorphisms preserve the bimodule actions.
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We have been interested in the Schur algebra here, but note that if we take a
permutation summand Mλ of E⊗r other than ξE⊗r ∼= M [1r], its endomorphism ring
over RSr would be the Hecke algebra EndRSr(R ↑SrSλ). A similar analysis would apply
in this situation.

The reader may wonder why a particular functor was chosen as the Schur functor
when there are other functors available that might merit equal consideration. We
conclude this section with some technical identities that show that the other functors
would have done just as well.

Corollary 5.0.5. As above, let ξ = ξ[1r] and let V be a left SF (n, r)-module. The
Schur functor V 7→ ξV may be described in the following ways:

ξV ∼= ξSR(n, r)⊗SR(n,r) V ∼= HomSF (n,r)(SF (n, r)ξ, V ) ∼= HomSF (n,r)(E
⊗r, V )

as left RSr-modules.

Proof. This follows from Proposition 5.0.2 and part (5) of Proposition 5.0.4.

Previously we have used the functors X → X\ = Hom(−, E⊗r) in both direc-
tions between right FSr-modules and left SF (n, r)-modules, with homomorphisms be-
ing taken over the appropriate ring. There are several other functors between left
SF (n, r)-modules and right FSr-modules. We describe some of these now and show
that they are all expressible in terms of each other. If X is a right RSr-lattice we will
let X̂ denote the left RSr-lattice with the same set as X, and with the left action of
Sr given by π · x = xπ−1. We similarly useˆto change a left RSr-lattice into a right
lattice, and also to change the side of SR(n, r) lattices using the antiautomorphism of
SR(n, r).

Proposition 5.0.6. Let R be a commutative ring with 1. Let X be a right RSr-lattice
and V a left SR(n, r)-lattice. Then

1. X\ = HomRSr(X,E
⊗r) ∼= ̂HomRSr(E

⊗r, X∗) ∼= (E⊗r ⊗RSr X̂)◦ as left SR(n, r)-
modules.

2. V \ = HomSF (n,r)(V,E
⊗r) ∼= ̂HomSF (n,r)(E⊗r, V ◦) ∼= ̂ξSR(n, r)⊗SR(n,r) V ◦ as

right RSr-modules

In cases where R is a principal ideal domain for instance, observe that (E⊗r⊗RSr X̂)◦

will be torsion free, even though E⊗r ⊗RSr X̂ might not be.

Proof. We use the fact that E⊗r is self dual as a (SR(n, r), RSr)-bimodule. Thus
HomRSr(X,E

⊗r) ∼= HomRSr(E
⊗r∗, X∗) ∼= HomRSr(E

⊗r, X∗) as R-modules. The first
is a left SR(n, r)-module and the last is a right SR(n, r)-module. We check that by Check these

things: they
might not be
right!

changing the module side we obtain a module isomorphism, and this demonstrates the
first isomorphism in (1). A similar approach proves the first isomorphism in (2). The
final isomorphism of (2) was seen already in Corollary 5.0.5.
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To prove the final part of (1) we start with

HomR(E⊗r ⊗RSr X̂, R) ∼= HomRSr(E
⊗r,HomR(X̂, R)) = HomRSr(E

⊗r, X∗)

by adjointness. Naturality implies that this an isomorphism of right SR(n, r)-modules.
Applyingˆto both sides yields the result.

5.1 The general theory of the functor f : B -mod→ eBe -mod

The systematic exposition of this functor seems to have first appeared in Green’s notes.
We let B be an R-algebra and e2 = e ∈ B an idempotent. We denote by f : B -mod→ This needs to be

presented with
the preceding
results.

eBe -mod the operation f(V ) = eV .

Proposition 5.1.1. 1. eV ∼= HomB(Be, V ) ∼= eB ⊗B V .

2. f is a functor. It has left adjoint U 7→ Be⊗eBeU and right adjoint HomeBe(eB, V ).

3. f is exact.

4. If V ∈ B -mod is simple then eV is either zero or simple in eBe -mod.
Class: are the
left and right
adjoints of f
naturally
isomorphic?
(No)

We construct a functor h : eBe -mod → B -mod given by W 7→ Be ⊗eBe W with
the action of B given by left multiplication and if ψ : W →W ′ then h(ψ) = 1Be ⊗ ψ.

Proposition 5.1.2. Let W ∈ eBe -mod. Then fh(W ) ∼= W .

Example 5.1.3. For SF2(2, 2) we have h(F2) = β
α .

More needs to be filled in here, following Green’s notes.

Example 5.1.4. Letting h(S[r]) = E⊗r⊗FSrS[r] = Symr(E). We deduce that Symr(E)
has a unique simple quotient as an SF (n, r)-module.

5.2 Applications

Let N ≥ n and let EN be a vector space with basis e1, . . . , eN . Let En be the subspace
spanned by e1, . . . , en.

Lemma 5.2.1. E⊗rn is a direct summand of E⊗rN as a FSr-module.

Proof. E⊗fN is the span of basic tensors ei1 ⊗ · · · ⊗ eir with ij ≤ n for all j, together
with the remaining basic tensors that do not satisfy this condition. These two sets are
preserved under the action of Sr.

Let e : E⊗rN → E⊗rn be projection with respect to the direct sum decomposition
indicated in the last lemma.

Lemma 5.2.2. eSF (N, r)e ∼= SF (n, r)
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Proof. This is immediate from Proposition 5.0.3.

Proposition 5.2.3. Let N ≥ n ≥ r. the functors f : SF (N, r) -mod → SF (n, r) -mod
and h : SF (n, r) -mod → SF (N, r) -mod are inverse, up to natural equivalence. The
numbers of isomorphism types of simple modules in the two categories are equal.

Proof. The numbers of simple modules in the two categories are equal and fh(W ) ∼= W
always. From this it follows that f induces a bijection on the simple modules. In
particular, if V is a (nonzero) simple module then f(V ) 6= 0. Furthermore f is exact,
so if W is simple and h(W ) is not simple, then neither is fh(W ), a contradiction.
It follows that h(W ) must be simple. We see that h∗ = h, because 1 − e kills no
simple module V . For any module V the natural map hf(V ) = Be ⊗eBe eV → V is Refer to results

not yet written.an isomorphism because fhf(V ) = f(V ) has the same length as V and hf(V ) → V
induces an isomorphism on applying f .

Two rings whose module categories are equivalent are said to be Morita equivalent.
The Morita equivalence of SF (N, r) and SF (n, r) when N ≥ n ≥ r just proven may
also be seen from the general theory of Morita equivalence, on observing that these two
rings are the endomorphism rings of modules with the same indecomposable summands,
taken with different multiplicities.

Theorem 5.2.4. Let E be a vector space of dimension n over the field F . Provided
n ≥ r, the lattice of SF (n, r)-submodules of each of E⊗r, ST r(E), Symr(E), Λr(E)
and Λλ1E ⊗ · · · ⊗ ΛλdE is independent of n. In each case, the functor V 7→ eV gives
an isomorphism of the lattices. In particular, Λr(E) is a simple SF (n, r)-module for
all n ≥ r.

Proof. It is immediate that the operation e : E⊗rN → E⊗rn sends each of the subspaces
of E⊗rN mentioned in the list to the corresponding subspace of E⊗rn . This is because e
sends every basic tensor e1 ⊗ · · · ⊗ eN to zero unless all ei lie in En, so that symmetric
tensors are sent to symmetric tensors, and so on. We realize Λr(EN as the span of
elements

∑
π∈Sr(−1)sign(π)ei1π ⊗ · · · ⊗ eirπ , and these elements for EN are sent to the

similar elements for En by e. From this we obtain the isomorphism of lattices, by
Proposition 5.2.3. Since Λr(Er) has dimension 1 it is simple, and hence so are all the
Λr(E).

We conclude with the observation that, in case the field is infinite, the weight
description of simple modules is compatible with the functorial correspondence between
representations of different general linear groups. When N ≥ n ≥ r the set of weights
Λ+(n, r) = Λ+(N, r) is the same. If λ is such a weight we have an idempotent ξλ in the
corresponding Schur algebra. Let us write ξλ,S(n,r) for this idempotent in the algebra
S(n, r). As above, we have SF (n, r) ∼= eSF (N, r)e ⊆ SF (N, r) and by this means we
may regard SF (n, r) as a subset of SF (N, r). We will also write LS(N,r)(λ) for the
corresponding simple SF (N, r)-module.

Proposition 5.2.5. Let F be an infinite field. Let N ≥ n ≥ r and let e : E⊗rN → E⊗rn
be projection as above. Let M be an SF (N, r)-module. We have
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1. ξλ,SF (N,r) = eξλ,SF (N,r)e = ξλ,SF (n,r).

2. dim(eM)λ = dimMλ.

3. eLS(N,r)(λ) = LS(n,r)(λ)

Proof. To be supplied.

Sketch of further applications, to be written fully. We may develop the theory as
above without the requirement that n ≥ r. In this case e kills the simples parametrized
by partitions with more than n parts.

We also need to develop the theory of the original Schur functor SF (n, r) -mod →
FSr -mod. In characteristic 0 or p > r the two categories have the same number of
isomorphism classes of simples and so f and h are inverse equivalences. In general,
there is a decomposition map that expresses simple modules in characteristic 0 as a
sum of simple modules in characteristic p, in a Grothendieck group. This can also be
described by expression the formal character of a simple module in characteristic 0 as
a sum of formal characters of simple modules in characteristic p. The Schur functor is
defined the same way in all characteristics and over the integers, so it commutes with
the decomposition map. Since it is exact, it implies that the decomposition matrix of
the symmetric group is a submatrix of the decomposition matrix of the Schur algebra.

As part of this we need to reconcile the labelling of simple modules for SF (n, r) and
FSr across the correspondence given by the Schur functor.

Example 5.2.6. In characteristic 0 we have formal characters Φ[2],0 = X2 +XY +Y 2

and Φ[12],0 = XY . In characteristic 2 we have Φ[2],2 = X2 +Y 2 and Φ[12],2 = XY . Thus

Φ[2],0 = Φ[2],2 + Φ[12],2. This is the formal character of the symmetric square Sym2(E2)
which is simple in characteristic 0, but has two composition factors with the characters
shown in characteristic 2, as seen in earlier calculations. Also Φ[12],0 = Φ[12],2. This is
the formal character of Λ2(E2), which is simple in all characteristics. More calculations

of characters
could be done as
exercises.SF2(2, 2)ξ =

β
α
β

=
L[12]
L[2]

L[12]
and Λ2(E) = β = L[12]. Y [2] = k, Y [2]\ = α

β and Y [12] = k
k ,

Y [12]\ =
β
α
β

.



Chapter 6

Representations of the category
of vector spaces

If C is a category and R is a commutative ring we let Rep(C, R) be the category of
functors C → R -mod.

Example 6.0.1. Let G be a group and F the corresponding category, so F has a single
object ∗ and Hom(∗, ∗) = G, with composition of morphisms equal to multiplication
within the group. Then Rep(F , R) identifies with the category of representations of G,
and with RG -mod.

Example 6.0.2. Let F be a field and let C = F -mod be the category of finite di-
mensional vector spaces over F . We study Rep(F -mod, F ), the category of functors
from finite dimensional vector spaces over F to finite dimensional vector spaces over
F . For an F -vector space E, let us write T r(E) = E⊗r. Then T r, ST r, Symr, Λr are
all examples of functors in Rep(F -mod, F ).

A morphism of functors is a natural transformation. For any category C, if M and
N are functors C → R -mod we say that M is a subfunctor of N if M(x) ⊆ N(x) for
all objects x of C in such a way that M is a functor in its own right when R-module
homomorphisms are restricted from N(x) to M(x). In other words, the inclusion maps
give a natural transformation M → N .

Example 6.0.3. Thus ST r is a subfunctor of T r. This requires us to check that every
linear map θ : E → E′ induces a map E⊗r → E′⊗r that sends ST r(E)→ ST r(E′).

If M is a subfunctor of N we may define a quotient functor N/M by (N/M)(x) =
N(x)/M(x), with morphisms induced on these quotient modules from the morphisms
between the values of N . A sequence of morphisms of functors is exact if on each
evaluation at objects x of C the sequence of modules is exact. We say that a functor
in Rep(C, R) is simple if it has no subfunctors other than the zero functor or itself.

Example 6.0.4. When F is a field of characteristic 2 there are natural short exact
sequences 0 → Λ2(E) → ST 2(E) → L([2])(E) → 0. This means there is a short exact

54
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sequence of functors 0 → Λ2 → ST 2 → L([2]) → 0. We will see that both Λ2 and
L([2]) are simple functors.

Given an object x ∈ C and a representation M ∈ Rep(C, R) we find that, for each
object x, the evaluation M(x) is a representation of the monoid EndC(x), meaning
a homomorphism of monoids EndC(x) → EndR(M(x)). This is the same thing as a
module for the monoid algebra REndC(x). Representations of categories have a number
of properties in common with representations of groups. There is constant functor at
R, namely the functor C → R -mod that takes the value R on all objects, and in which
every morphism acts as the identity morphism. When R is a field, it is immediate that
the constant functor at R is simple.

There is also an internal tensor product of representations. If M and N are both
representations of C we define M ⊗R N to be the representation given by (M ⊗R
N)(x) := M(x) ⊗R N(x) on objects, and if α : x → y is a morphism in C then
(M ⊗R N)(α) := M(α)⊗R N(α).

6.1 Simple representations of the matrix monoid

We examine the particular case when M ∈ Rep(F -mod, F ) is a functor from F -vector
spaces to F -vector spaces. When E is a vector space of dimension n over F , then
M(E) is a representation of Matn(F ), considered as a monoid under multiplication.
By further restriction we see that M(E) is also a representation of GLn(F ).

Example 6.1.1. Consider the functor in Rep(F -mod, F ) that assigns the value F
to each vector space E, including the zero vector space, and the identity map to each
morphism of vector spaces. The endomorphism monoid of the zero vector space consists
of a single element 0, but it does not act as zero on the value of the functor at the zero
vector space.

Because of this connection between representations of F -mod and representations
of Matn(F ), we start be considering these latter representations. To this end, let

e =


1

. . .

1
0

 ∈ Matn(F ).

Example 6.1.2. We describe two ways in which, for a vector space E, a space such
as E⊗r can be regarded as a representation of Matn(F ). The first is the usual way, in
which every n×n matrix actors via its r-fold tensor power. The second is the same as
the first for non-singular matrices. We let all singular matrices act as zero. The fact
that this gives a representation of Matn(F ) relies on the fact that the composite of a
singular matrix with any matrix is still a singular matrix. In this second representation,
the idempotent e acts as 0.

Lemma 6.1.3. 1. Matn eMatn is the set of matrices of rank less than n.
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2. F Matn eF Matn is an ideal in F Matn with quotient isomorphic to FGLn(F ).

3. eMatn e ∼= Matn−1.

Proof. To be supplied.

Proposition 6.1.4. Let V be a simple F Matn-module. Then either

1. V is a simple FGLn(F )-module on which Matn−1 acts as 0, or

2. V restricts to give a simple F Matn−1-module.

Proof. To be supplied.

Corollary 6.1.5. The simple F Matn-modules biject with the union of the simple
FGLj(F )-modules where 0 ≤ j ≤ n.

According to Nick Kuhn, when j < n each simple representation of Matn corre-
sponding to a simple FGLj(F )-module is simple when restricted to GLn(F ). Write an
account of this here.

Example 6.1.6. Class exercises: How many elements do F2 Mat0(F2), F2 Mat1(F2)
and F2 Mat2(F2) have? How many simple representations do they each have? Are any
of them semisimple? (That might need to come after the next example.)

Example 6.1.7. Write Ij ∈ Matn(F ) for the matrix that has j entries 1 down the
leading diagonal and 0 elsewhere. Mat0 has only a single element: the 0 × 0 matrix.
Thus F Mat0(F ) ∼= F as rings and its modules are vector spaces. Mat1 has two elements
which we may write as I0 and I1. Thus F Mat1(F ) = FI0⊕F (I1−I0) as rings, and it is
the direct sum of two fields, hence semisimple. The first summand gives a representation
S0,F , and since I0I0 = I1I0 = I0 both I0 and I1 act as 1 on this representation. This
representation has the form Mat1(F )I0 ⊗F Mat0(F ) S0,F , as we may check. The second
summand gives a representations S1,F on which I1 acts as 1 and I0 acts as 0. Note
that GL1(F ) acts as 1 on both these simples.

Next Mat2(F2) has 16 elements, of which 6 are invertible, 9 have rank 1 and 1 has
rank 0. We calculate F Mat2 I1 ⊗F Mat1(F ) S1,F . For this, F Mat2 I1 has basis[

1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 0

]

and

[
a b
c d

]
acts by sending

[
1 0
0 0

]
→
[
a 0
c 0

]
,

[
0 0
1 0

]
→
[
b 0
d 0

]
,

[
0 0
0 0

]
→
[
0 0
0 0

]
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We calculate that

[
0 0
0 0

]
⊗F Mat1(F ) S1,F = 0. Thus F Mat2 I1 ⊗F Mat1(F ) S1,F is a

2-dimensional space spanned by

[
1 0
0 0

]
⊗F Mat1(F ) x and

[
0 0
1 0

]
⊗F Mat1(F ) x, where x

spans S1,F . On this space

[
a b
c d

]
acts as usual. We see that

F Mat2 I1 ⊗F Mat1(F ) S1,F = S1,F

regarded now as a representation of Mat2(F ). By a similar calculation we see that
F Mat2 I1 ⊗F Mat1(F ) S0,F has dimension 1, and has all matrices acting as the identity
(including the zero matrix). Thus this representation is S0,F as a representation of
Mat2(F ). These simple representations turn out to be induced from smaller matrix
monoids.

Are all simple
representations
induced from
their minimal
space?6.2 Simple representations of categories and the category

algebra

As mentioned in the introduction, when C is a small category and R is a commutative
ring with a 1 we define a representation of C over R to be a functor F : C → R-mod
where R-mod is the category of R-modules. Such a representation may be identified as
a module for a certain algebra which we now introduce. We define the category algebra
RC to be the free R-module with the morphisms of the category C as a basis. The
product of morphisms α and β as elements of RC is defined to be

αβ =

{
α ◦ β if α and β can be composed

0 otherwise

and this product is extended to the whole of RC using bilinearity of multiplication. We
have constructed an associative algebra which can be found in Section 7 of [4] (where
the approach is to pass through an intermediate step in which we first ‘linearize’ C).
Our convention is that we compose morphisms on the left, so that if the domain dom(α)
equals the codomain cod(β) then we obtain a composite α ◦ β. Because of this we will
work almost entirely with left modules when we come to consider modules for the
category algebra.

If C happens to be a group, that is a category with one object in which every
morphism is invertible, then a representation of C is the same thing as a representation
of the group in the usual sense, namely a group homomorphism from the group to the
group of automorphisms of an R-module, and the category algebra RC is the group
algebra. It is a familiar fact that group representations may be regarded as the same
thing as modules for the group algebra, and we will see that something similar holds
with categories in general. One of the themes of this account is that representations of
categories share a number of the properties of group representations.
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When the category happens to be a partially ordered set the category algebra RC is
known as the incidence algebra of the poset. Indeed, this may be taken as a definition
of the incidence algebra.

The third example is that of representations of a quiver. A quiver Q is a directed
graph, and given such data we may form the free category FQ on Q, which is the
category whose objects are the vertices of Q and whose morphisms are all the possible
composites of the arrows in Q (including for each object a composite of length zero
which is the identity morphism at that object). The category algebra RFQ is the same
as the path algebra of Q, and it is well known that, provided Q has finitely many
vertices, modules for the path algebra may be identified with representations of the
quiver.

Our first result says that representations of C are the same thing as RC-modules in
general, at least when C has finitely many objects.

Proposition 6.2.1 ([4]). Let C be a small category, let (R -mod)C be the category of
representations of C and let RC-mod be the category of RC-modules. There are functors
r : (R -mod)C → RC -mod and s : RC -mod→ (R -mod)C with the properties that

1. sr ∼= 1(R -mod)C , and

2. r embeds (R -mod)C as a full subcategory of RC -mod, and if C has finitely many
objects then rs ∼= 1RC -mod.

Thus if C has finitely many objects the representations of C over R may be identified
with RC-modules.

Proof. The idea is the same as the identification of group representations with modules
for the group algebra, with an extra ingredient. Given a representation M : C →
R-mod we obtain an RC-module r(M) =

⊕
x∈ObCM(x) where the action of a morphism

α : y → z on an element u ∈ M(x) is to send it to M(α)(u) if x = y and zero
otherwise (applying morphisms from the left.) Conversely, given an RC-module U ,
for each x ∈ ObC let 1x denote the identity morphism at x and define a functor
M = s(U) : C → R-mod by M(x) = 1xU . If α : x→ z is a morphism in C and u ∈ 1xU
we define M(α)(u) = αu. The two functors r and s evidently have the properties
claimed, and in case C has finitely many objects they give an equivalence of categories
between representations of C over R and RC-modules.

Example 6.2.2. Let C be the category with two objects, x and y, and with morphisms
1x, 1y, α : x→ y, β : y → x and γ : y → y, satisfying βα = 1x and αβ = γ. From this
it follows that γ2 = γ, βγ = β and γα = α.

x1x 99

α
** y

β

jj
1y ��

γ
WW

This category will be considered again in Example 6.3.3. Since C has 5 morphisms, the
rank of the category algebra RC is 5. Consider the constant functor M : C → R -mod
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that takes the value R at each object x and y, and sends each morphism in C to
the identity morphism. This functor corresponds to an RC-module that is free as an
R-module of rank 2, and where the morphisms 1x, 1y, α, β, γ act via the matrices[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
1 0

]
.

Assume that D is a full subcategory of C and that D has finitely many objects. In
this situation the category algebra of D is a subalgebra of the category algebra of C,
and in fact RD = 1RDRC1RD. Restriction from C to D is a functor which sends an
RC-module M to M ↓CD= 1RDM . Its left adjoint is N 7→ N ↑CD= RC ⊗RD N , and the
right adjoint of restriction is N 7→ HomRD(RC, N).

We studied the relationship between algebras B and eBe where e is an idempotent
in B in Section 5.1. The properties of this relationship have an immediate consequence
for representations of categories.

Proposition 6.2.3 (see [2]). Let D be a full subcategory of C and suppose that D has
finitely many objects. Let M be a representation of D.

1. Induction ↑CD sends projective objects to projective objects. If E is a set of objects
of D and M is generated by its values on E then M ↑CD is also generated by its
values on E. Furthermore M ↑CD↓CD= M .

2. Restriction ↓CD is an exact functor which sends each simple RC-module either to
a simple RD-module or to zero. Every simple RD-module arises in this way, and
there is a bijection given by restriction between the simple RC-modules which are
non-zero on D, and the simple RD-modules.

Proof. (1) Since RD ↑CD= RC ⊗RD RD ∼= RC is projective it follows that the induction
of an arbitrary projective is projective. The property of generation also follows from the
tensor product description of induction since if A is a subset of M for which M = RD·A
then

RC(1RD ⊗RD A) = RC ⊗RD (RD ·A) = RC ⊗RDM = M ↑CD .

We have

M ↑CD↓CD= 1RD(RC ⊗RDM) = 1RDRC1RD ⊗RDM = RD ⊗RDM ∼= M.

(2) Exactness of a sequence of functors is detected by evaluating the functors at
objects and if the evaluations are exact on all objects of C, they are also exact on all
objects of D. If T is a simple RC-module and x = 1RDx any non-zero element of T ↓CD
then T = RC1RDx by simplicity so T ↓CD= 1RDRC1RDx = RDx, from which it follows
that T ↓CD is simple since it is generated by any non-zero element.

Now let S be a simple RD-module, and consider N = {x ∈ S ↑CD
∣∣ 1RDRCx = 0}.

This is the largest RC-submodule of S ↑CD which is zero on D. Observe that S ↑CD is
generated by any element which is non-zero on D, since such an element generates the
restriction to D by simplicity of S, and this generates S ↑CD by part (1). It follows that
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N is the unique maximal submodule of S ↑CD, since if x 6∈ N then RCx = S ↑CD as just

observed. In particular Ŝ := S ↑CD /N is a simple RC-module. Since N ↓CD= 0 we have

Ŝ ↓CD= S ↑CD↓CD= S by part (1). This shows that every simple RD-module arises as the
restriction of a simple RC-module. If T is a simple RC-module for which T ↓CD∼= S then
by adjointness we have a non-zero homomorphism S ↑CD→ T from which it follows that

T is a simple quotient of S ↑CD, and hence T ∼= Ŝ. This completes the proof.

It is a remarkable and useful property that every simple module defined on D
extends to a simple module defined on C. More can be said about this relationship,
and we mention that a theory of relative projectivity, vertices and sources inspired by
Green’s theory for group representations is developed in the thesis of Xu [Xu]. Reference needed

6.3 Parametrization of simple and projective representa-
tions

We start by parametrizing the simple representations of a category C. It is the case
that they are naturally defined over a field R, and we could make the assumption that
R is a field without loss of generality if we wish. In fact it does not seem to make a
difference to the first results of this section.

We start by repeating Proposition 6.2.3 in a special case.

Proposition 6.3.1. Let S be a simple representation of C over R.

1. For every full subcategory D of C with finitely many objects the restriction S ↓CD
is either a simple RD-module or zero.

2. For every object x of C the evaluation S(x) is a simple REndC(x)-module.

3. If T is another simple representation of C over R and x is an object of C for which
T (x) ∼= S(x) as REndC(x)-modules, and T (x) 6= 0, then S ∼= T as representations
of C.

Proof. The result merely restates and interprets Proposition 3.2, and (1) is nothing
more than this. For (2) and (3) we apply Proposition 3.2 in the case of the full
subcategory which has x as its only object. Here the category algebra is REndC(x)
and the statements follow immediately.

Consider the set of pairs (x, V ) where x is an object of C and V is a simple
REndC(x)-module. We will write (x, V ) ∼ (y,W ) if and only if there is a simple
RC-module S with S(x) ∼= V and S(y) ∼= W . Certainly if x and y are isomorphic in C
and V ∼= W as REndC(x)-modules, where the action of EndC(x) on W is transported
via an isomorphism between x and y, then (x, V ) ∼ (y,W ), but this property may arise
in other circumstances as well, as we will illustrate by example after the next result,
which follows immediately from Proposition 6.3.1.
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Corollary 6.3.2. 1. The relation ∼ is an equivalence relation on the set of pairs
(x, V ) where x ranges through objects of C and V ranges through simple REndC(x)-
modules.

2. The isomorphism classes of simple representations of C are in bijection with the
equivalence classes of pairs (x, V ), the bijection sending a simple module S to the
equivalence class of (x, S(x)), where x is any object of C for which S(x) 6= 0.

Example 6.3.3. Let C be the category with two objects, x and y, and with morphisms
1x, 1y, α : x→ y, β : y → x and γ : y → y, satisfying βα = 1x and αβ = γ. From this
it follows that γ2 = γ, βγ = β and γα = α.

x1x 99

α
** y

β

jj
1y ��

γ
WW

This category may be identified as the full subcategory of the category of F2-vector
spaces whose objects are the vector spaces of dimensions 0 and 1, and it was already
considered in Example 6.2.2.

We see that QEndC(x) = Q has one simple module and

QEndC(y) ∼= Q[c]/(c2 − c) ∼= Q[c]/(c)⊕Q[c]/(c− 1) ∼= Q⊕Q

has two simple modules, giving rise to pairs (x,Q), (y,Q0), (y,Q1), where γ acts on Q0

and Q1 as multiplication by 0 and 1, respectively. We see that

QC = Q〈1x, α〉 ⊕Q〈γ, β〉 ⊕Q〈1y − γ〉

as QC-modules, and that the three submodules in the decomposition are simple and
Q〈1x, α〉 ∼= Q〈γ, β〉. In fact the first two modules, when regarded as functors, both
take the value Q on x and y, and every morphism acts as the identity morphism –
they are the constant functor. They are simple because they are generated by any non-
zero vector which they contain. Thus QC has two simple modules, Sx,Q ∼= Sy,Q1 and
Sy,Q0 . Under the equivalence relation ∼ the equivalence classes are {(x,Q), (y,Q1)}
and {(y,Q0)}.

Exercise: Show
that the category
of
representations
of vector spaces
of dimension at
most n is
equivalent to the
category of
representations
of the monoid
Matn.

Theorem 6.3.4 (Kuhn). Let M ∈ Rep(F -mod, F ) be simple, and let n be minimal
such that M(Fn) 6= 0. Then M(Fn) is a simple GLn(F )-module and singular n × n-
matrices act as zero on it. The pair (n,M(Fn) completely determines M , and for each
such pair there is a simple functor M realizing the pair. Thus isomorphism classes of
simple functors biject with

⋃
j≥0{simple GLj(F )-modules}.

Proof. This is immediate from Proposition 6.3.1. Note that if M is a simple functor
then all its evaluations M(Fm) are simple or zero as modules for the monoid Matm.
By minimality of n and the fact that singular matrices factor through Fn−1, such
matrices act as zero on M(Fn), because M(Fn−1) is zero. Thus M(Fn) is simple as a
representation of GLn(F ), by Proposition 6.1.4.
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To verify in practice that a particular functor is simple the following criterion can
be useful.

Theorem 6.3.5. Let M be a functor in Rep(F -mod, F ) and let n be minimal with
M(Fn) 6= 0. Then M is simple if and only if

1. M(Fn) is simple as a GLn(F )-module,

2. for all natural numbers j the sum of the images M(α) : M(Fn)→M(F j), taken
over all linear maps α : Fn → F j, equals M(F j), and

3. for all natural numbers j the intersection of the kernels of maps M(β) : M(F j)→
M(Fn), taken over all linear maps β : F j → Fn, is zero.

Proof. Observe that for each natural number j, putting U(F j) to be the sum of the
images of the M(α) as in part (2), defines a subfunctor U of M , and putting V (F j) to
be the intersection of the kernels of the M(β) as in part (3), also defines a subfunctor
V of M .

If M is simple we have already seen that M(Fn) is a simple module. Furthermore,
U and V must be zero or M , and since U(Fn) = M(Fn) 6= 0 we have U = M , and
since V (Fn) = 0 6= M(Fn) we deduce V = 0.

Conversely, suppose the three conditions hold and suppose that N is a nonzero
subfunctor of M . By condition (3) there is a linear map β : F j → Fn for some j so
that M(β) is nonzero on N(F j). Thus N(Fn) 6= 0, and this is a nonzero EndFn-
submodule of M(Fn), which is simple. It follows that N(Fn) = M(Fn). By condition
(2), which says that M is generated by its value at Fn, we have M(F j) = N(F j) for
all j, so that M = N . This shows that M is a simple functor.

We present an application of this theorem.

Corollary 6.3.6. For all n the exterior power functor Λn is simple.

Proof. We have seen before that every Λn(F j) is either simple as a GL(F j)-module,
or zero, and from this a proof can be readily constructed. We may also prove it using
Theorem 6.3.5. We verify the three conditions of that theorem. The minimal index j
so that Λn(F j) 6= 0 is j = n, and Λn(Fn) has dimension 1, so it is a simple module.
This shows that condition (1) of the theorem holds. If 1 ≤ i1 < · · · < in ≤ j then
the linear map α : Fn → F j defined by α(ek) = eik induces a map Λ(Fn) → Λ(F j)
mapping onto the span of ei1 ∧ · · · ∧ ein . Since such vectors span Λ(F j) we see that
condition (2) is satisfied. To verify (3), suppose that

∑
ci1...in(ei1 ∧ · · · ∧ ein) is an

element of Λn(F j), and suppose that some particular coefficient ci1...in is nonzero. The
map β : F j → Fn specified by β(eik) = ek, and β(ei) = 0 if i 6∈ {i1, . . . , in}, sends the
sum to ci1...in(e1 ∧ · · · ∧ en), which is nonzero. This shows that no nonzero element of
Λn(F j) is mapped to zero by all linear maps F j → Fn, provided j ≥ n, thus showing
that condition (3) of Theorem 6.3.5 holds.

To do: continue
to show that
Λn(F j) is simple
as a
representation of
GLj(F ).
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Corollary 6.3.7. For every j ≥ n the Matj(F )-representation Λn(F j) is simple.

Example 6.3.8. We identify Λn as the simple functor Sn,det where det denotes the
one-dimensional representation of GLn(F ) on Λn(Fn). When n = 0 this gives the
constant functor Λ0 = S0,F . The table of dimensions of evaluations of these functors
is Pascal’s triangle.

6.4 Projective functors
This next
material is
adapted from
Webb:
Introduction to
representations
and cohomology
of categories.

We now turn to the projective representations of a category C, and for this we will
assume that R is a field or a complete discrete valuation ring. When C is finite,
RC is an R-algebra of finite rank, the Krull-Schmidt theorem holds, and each simple
representation Sx,V has a projective cover Px,V . This gives a parametrization of the
indecomposable projective representations by the equivalence classes of pairs (x, V ) in
this case.

The category of finite dimensional vector spaces does not have finitely many objects,
but its projective representations behave in the same way as if it did have finitely many
objects. For a general category C, for each object x ∈ Ob(C) we may construct a
linearized representable functor Px : C → R -mod defined by Px(y) = RHomC(x, y), the
free R-module with the elements of HomC(x, y) as a basis. Class exercise:

figure out some
entries of the
table without it
being given.

Example 6.4.1. When F = Fp is the field of p elements and C = F -mod the di-
mensions of the evaluations of representable functors Px(Fn) are given in the following
table. Note that PF (Fn) may be identified with the group ring of the elementary
abelian group Fn.

Dimensions of evaluations of representable functors

P0 PF · · · PF j

F 0 1 1 1
F 1 1 p pj

F 2 1 p2 p2j

...
Fn 1 pn pnj

The following identification of representable functors on the category of vector
spaces is intriguing, although we will not use it.

Proposition 6.4.2. Let C be the category of finite dimensional vector spaces over F .
If V1 and V2 are vector spaces then PV1⊕V2

∼= PV1⊗RPV2. In particular, PFn ∼= (PF )⊗n.

Proof. It follows from

PV1⊕V2(W ) = RHom(V1 ⊕ V2,W )
∼= R[Hom(V1,W )×Hom(V2,W )]
∼= RHom(V1,W )⊗R RHom(V2,W )

= (PV1 ⊗R PV2)(W ).
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Proposition 6.4.3. Let x be an object of a category C.

1. (Yoneda’s lemma) Let M be a representation of C. Then HomRC(Px,M) ∼= M(x).

2. The representation Px is projective and generated by its value at x.

3. Regarded as an RC-module, Px ∼= RC1x.

4. Let D be any full subcategory of C which contains x. Then Px ∼= PDx ↑CD where
PDx = Px ↓CD is the functor Px constructed for D.

Proof. (1) We define α : HomRC(Px,M)→M(x) by α(η) = ηx(1x). In the opposite di-
rection we define β : M(x)→ HomRC(Px,M) as follows: if u ∈M(x) and

∑
γ:x→y λγγ ∈

Px(y) = RHomC(x, y) we put β(u)y(
∑

γ:x→y λγγ) =
∑

γ:x→y λγM(γ)(u). We verify in
the usual way that α and β are mutually inverse isomorphisms.

(2) Suppose we have an epimorphism of representations θ : M → N and a morphism
η : Px → N . We may find u ∈ M(x) so that θ(u) = ηx(1x). Now the morphism
β(u) : Px →M satisfies θ ◦β(u) = η since θx(β(u)x(1x)) = θx(u) = ηx(1x). If γ : x→ y
then γ = Px(γ)(1x) lies in the subfunctor of Px generated by 1x ∈ Px(x). This shows
that Px is generated by its value at x.

(3) From the definitions, the value of RC1x at an object y is

1yRC1x = RHomC(x, y) = Px(y)

and this shows that Px ∼= RC1x as RC-modules.
(4) We have PDx = RD1x so

PDx ↑CD= RC ⊗RD RD1x = RC1x = Px.

Also, if y is an object of D then

Px ↓CD (y) = 1yRC1x = HomC(x, y) = HomD(x, y) = PDx (y),

which shows that PDx = Px ↓CD.
This corollary
needs to be
adapted to the
categories being
considered. See
below.

Corollary 6.4.4. Suppose that R is a field or a complete discrete valuation ring and
let P be an indecomposable projective RC-module where C is a finite category. Then
for some object x of C, P is generated by its value at x and is isomorphic to a direct
summand of Px. It has the form P ∼= RCe where e is a primitive idempotent in the
monoid algebra REndC(x). Every primitive idempotent in REndC(x) remains primitive
in RC.

Proof. By Yoneda’s lemma, for each object y and element of P (y) there is a homo-
morphism Fy → P having that element in its image and so P is a homomorphic
image of a direct sum of representable functors

⊕
i Fxi . Since P is indecomposable
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projective, the surjection must split and P is isomorphic to a direct summand of a
functor Px. Since Px is generated by its value at x, so is P . Since by Yoneda’s lemma
EndRC(Px) ∼= REndC(x), the direct summand has the form RC1xe = RCe for some
idempotent e ∈ REndC(x), and e is primitive in RC since P is indecomposable, hence
a fortiori primitive in REndC(x).

Equally, if f is a primitive idempotent in REndC(x) then RCf is a projective RC-
module which is generated by its value at x. If RCf = M ⊕ N is a decomposition as
a direct sum of RC-modules, then each of M and N is also generated by its value at
x, and so if they are non-zero then 1xRCf = 1xM ⊕ 1xN is a non-zero decomposition
of the indecomposable REndC(x)-module REndC(x)f . Since this is not possible we
deduce that RCf is indecomposable, and so f is primitive in RC.

The above result shows that the indecomposable projective RC-modules may be
parametrized by a subset of the primitive idempotents of the REndC(x) as x ranges
over the objects of C, and these in turn are parametrized by the equivalence classes of
pairs (x, V ) where x is an object of C and V is a simple REndC(x)-module, since we
have already seen that these parametrize the simple representations.

Corollary 6.4.5. Suppose that R is a field or a complete discrete valuation ring and
let C be a category for which each endomorphism monoid EndC(x) is finite, as x ranges
over objects of C.

1. EndRC(Px) ∼= REndC(x), an algebra of finite rank over R.

2. Finitely generated projective representations satisfy the conclusion of the Krull-
Schmidt theorem.

3. Every finitely generated indecomposable projective representation P is generated
by its value at a single object x and is a direct summand of Px.

4. Finitely generated representations have projective covers.

5. Each finitely generated indecomposable projective representation has a unique sim-
ple quotient, and is the projective cover of that simple quotient.

Proof. To be supplied.

Corollary 6.4.6. Let C be the category of finite dimensional vector spaces over a finite
field F .

1. The indecomposable projective representations are the projective covers Pn,V of
the simple representations Sn,V , where V is a simple RGLn(F )-module.

2. PFn ∼=
⊕

n,V P
dnj,V
j,V , where dnj,V = dimSj,V (Fn)/ dim End(Sj,V )

In part (2) above we have that End(Sj,V ) ∼= End(V ), and it is a fact that simple
representations of GLj(F ) over F are absolutely simple, so that this dimension is 1.
Note also that, since Sj,V (F (n)) = 0 unless n ≥ j, the summands Pj,V of FFn that
appear with nonzero multiplicity all have j ≤ n.
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Proof. To be supplied.

Example 6.4.7. According to the formula for the decomposition of PFn we have
P0 = P0,F = S0,F , using also the fact that P0,F is the projective cover of S0,F , and that
both of these functors have evaluations all of dimension 1. Thus the constant functor
S0,F is projective.

Proposition 6.4.8. Let F = F2 be the field of 2 elements. The indecomposable pro-
jective P1,F has as its composition factors all of the simple functors Λn, n ≥ 1, with
each simple functor appearing just once.

Proof. We have PF = P0,F ⊕ P1,F from the formula, and P1,F is the projective cover
of S1,F = Λ1, the identity functor. We illustrate the dimensions of the evaluations of
these functors in a table.

Dimensions of some evaluations

P0 = Λ0 PF = P0,F ⊕ P1,F P1,F S1,F RadP1,F

F 0 1 1 0 0 0
F 1 1 2 1 1 0
F 2 1 4 3 2 1
F 3 1 8 7 3 4
F 4 1 16 15 4 11

We see that dimP1,F (Fn) = 2n − 1. The only simple functor that is 0 on F 0 and of
dimension 1 on F is S1,F , so we deduce that S1,F is a composition factor of P1,F (and
in any case we already knew this). We deduce that the remaining composition factors
of P1,F have dimensions summing to 1 on F 2 and 0 on F 0 and F 1. We now repeat
the argument: the only simple that is 0 on F 0 and F 1 and of dimension 1 on F 2 is
S2,F = Λ2, so this must be a composition factor. We now find that the remaining
composition factors have dimensions summing to 1 on F 3, and 0 on smaller spaces. We
repeat the argument. Since

dimP1,F (Fn) = 2n − 1 = 1 +
n−1∑
i=1

(
n

i

)
= 1 +

n−1∑
i=1

dim Λi(Fn)

we see that after subtracting the dimensions of simple composition factors Λi for 1 ≤
i ≤ n − 1 we are left with an evaluation at Fn of dimension 1, 0 on smaller spaces,
forcing a composition factor Λn. This shows that every Λn appears as a composition
factor with n ≥ 1, and there are no more since the dimensions of evaluations of these
functors sum to give the dimension of P1,F at each evaluation.

To do: Examples over Fp where p 6= 2. Give a proof that simple functors have sim-
ple evaluations as modules for GLn. Apply the theory of simple modules for monoids
in terms of idempotents (see Linckelmann-Stolarz). Quasi-hereditary structure. Rela-
tions between weight description of simples and different simple evaluations of a simple
functor. Show that simple functors are not zero above their minimal nonzero value
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(exercise?). Describe the application to the Steenrod algebra as endomorphism ring
of the sum of the symmetric powers. The artinian conjecture of Schwartz (theorem of
Sam and Snowden).
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