Assignment 7 - Due Thursday 10/26/2017
Read: the rest of Section 1.7 and Section 1.8.

Exercises:

Hand in only the exercises which have stars by them.
Section 1.7: $14^{*}, 15 b^{*}, 16 a b c, 19,20,21^{*}$
Section 1.8: $1,2^{*}, 3^{*}, 4,5,6,7,8^{*}, 9^{*}, 10,11,12,13^{*}$

Comments on these questions:

1.7.14 is abstract. First of all, what does it mean? There is a comment about this expression (with f instead of g) on page 123 , which is that it need not tend to a limit as h goes to 0 . Depending on the direction h takes as it approaches 0 the expression may approach various different values. You can see this if you take g to be a linear function, say given by a diagonal matrix with different numbers down the diagonal. What you do know is that the expression differs from a linear function of h by a quantity which goes to zero. Prove that the linear function is bounded as h goes to 0 and then deduce that the function you are asked about is bounded. This is a standard kind of manipulation in this area of mathematics.

