Math3592 review sheet for the final exam

The final exam will take place on Friday December 15, 12:00-3:00, in room Vincent Hall 211. I will hold a review session in a room in Vincent Hall, probably on the second floor, from 10:00-11:00 on Friday morning. Come to my office (Vincent 350) then to find out.

There are 12 questions on the exam, some divided into parts, with each question part usually worth 6% of the total. You may not use books. You may use a single sheet of your own notes. You may use a calculator. Always show your work, and be sure to write down sufficient detail so that I can see that you are able to do all calculations without a calculator if necessary. If you are not sure what is required in any question, or what the question means, do ask.

Here is a start on some review questions. I may come up with some more.

1. Let $f: \operatorname{Mat}(2,2) \rightarrow \mathbb{R}$ be the mapping $f(A)=\operatorname{trace}\left(A^{2}\right)$. Find the directional derivative of f at the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ in the direction of the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
2. Consider the following functions which are defined to be 0 at $(0,0)$. Are they continuous at the origin? Differentiable? Do the partial derivatives exist?

$$
\frac{x^{2}}{\sqrt{x^{2}+y^{2}}}, \quad \frac{2 x-5 y}{\sqrt{x^{2}+y^{2}}}, \quad \frac{x y}{\sqrt{x^{2}+y^{2}}}, \quad \frac{x^{2}+y^{2}}{x+y^{2}}
$$

3. True or false? For each of the following statements, decide whether it is true or false, and then either give brief reasons or a counterexample to justify your assertion.
(a) There exists a surjective linear mapping $\mathbb{R}^{7} \rightarrow \mathbb{R}^{10}$.
(b) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a differentiable function, there can never be a function $g: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{2} with $g f=1_{\mathbb{R}^{2}}$, the identity mapping on \mathbb{R}^{2}.
(c) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a differentiable function, there can never be a function $g: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{2} with $f g=1_{\mathbb{R}^{3}}$, the identity mapping on \mathbb{R}^{3}.
(d) Let v_{1}, \ldots, v_{r} be a linearly independent set of vectors in a vector space V and w_{1}, \ldots, w_{r} another set of vectors in a vector space W. Then there exists a linear mapping $T: V \rightarrow W$ with $T\left(v_{i}\right)=w_{i}$ for all i with $1 \leq i \leq r$.
(e) If S is an $m \times n$ matrix of rank m then there exists an $n \times m$ matrix T with $S T=I$, the identity matrix.
(f) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable and there exists g : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f g=g f=1$. Then g is differentiable.
(g) If $f: U \rightarrow V$ and $g: V \rightarrow W$ are linear mappings then $\operatorname{rank}(g f) \leq \operatorname{rank}(f)$ always and $\operatorname{rank}(g f) \leq \operatorname{rank}(g)$ always.
(h) If $S: U \rightarrow V$ is a linear mapping which is onto then there exists a linear mapping $T: V \rightarrow U$ with $S T=I$.
(i) If $S: U \rightarrow V$ is a linear mapping which is onto then there exists a linear mapping $T: V \rightarrow U$ with $T S=I$.
(j) If $S: U \rightarrow V$ is a linear mapping which is 1-1 then there exists a linear mapping $T: V \rightarrow U$ with $S T=I$.
(k) If $S: U \rightarrow V$ is a linear mapping which is 1-1 then there exists a linear mapping $T: V \rightarrow U$ with $T S=I$.
(l) Same questions as (h) (i), (j), (k) with the additional hypothesis that $\operatorname{dim} U=$ $\operatorname{dim} V$.
4. Let S be a subset of \mathbb{R}^{n}. We will say that x is a limit point of $S \Leftrightarrow$ for all $\epsilon>0$ there exists $y \in S$ with $0<|x-y|<\epsilon$. Using the definition that S is closed \Leftrightarrow for every point x not in S there is a ball of some positive radius with center x which contains no point of S, prove that

$$
S \text { is closed } \Leftrightarrow S \supseteq \text { its limit points. }
$$

Which of the following statements means x is not a limit point of S ?
(i) There exists $\epsilon>0$ such that for all $y \in S$ either $y=x$ or $|y-x| \geq \epsilon$.
(ii) There exists $\epsilon>0$ such that for all $y \in S$ either $y=x$ or $|y-x|>\epsilon$.
(iii) There exists $\epsilon>0$ such that there exists $y \in S$ with either $y=x$ or $|y-x| \geq \epsilon$.
(iv) There exists $y \in S$ such that there exists $\epsilon>0$ with either $y=x$ or $|y-x|>\epsilon$.
5. Do one step of Newton's method to solve the system of equations
6. Calculate $\operatorname{det}\left(\begin{array}{ccc}1 & 2 & -1 \\ 5 & 1 & 0 \\ 4 & 1 & 1\end{array}\right)$.
7. Prove that

$$
D f(a)(h)=\lim _{t \rightarrow 0} \frac{f(a+t h)-f(a)}{t}
$$

8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear map whose matrix with respect to the standard bases is $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Find the matrix of T with respect to the bases

$$
\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \text { and } \quad\binom{1}{0},\binom{1}{1}
$$

9. Questions about compactness, open, closed, boundary etc. Questions about distance between points lines and planes.
