SOLUTIONS FOR CHAPTER 1
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FIGURE FOR SOLUTION 1.1.1. From left: (a), (b), (c), and (d).

1.1.2

b. L C R? c. CCR? d. x € C?,

1.1.3 a. veR3

e. B C By C Bo,....

1.1.4 a. The two trivial subspaces of R are {0} and R"™.

b. Yes there are. For example,

(Rotating all the vectors by any angle gives all the examples.)
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1.1.7 The vector field in part a points straight up everywhere. Its length
depends only on how far you are from the z-axis, and it gets longer and
longer the further you get from the z-axis; it vanishes on the z-axis. The
vector field in part b is simply rotation in the (z, y)-plane, like (f) in exercise
1.1.6. But the z-component is down when z > 0 and up when z < 0. The
vector field in part ¢ spirals out in the (z,y)-plane, like (h) in exercise 1.1.6.
Again, the z-component is down when z > 0 and up when z < 0.




16  Solutions for Chapter 1

0
1.1.8 (a) 0 (b) Assuming that a < 1, flow is in the
a — a2 — 2
counter-clockwise direction and using cylindrical coordinates (r,6,z) we
0
get | (a? = (1=7)%)/r
0

1.2.1 i.2x3 . 2x2 ii.3x2 iv.3Ix4 v.3x3

b. The matrices i and v can be multiplied on the right by the matrices
iii, iv, v; the matrices ii and iii on the right by the matrices i and ii.

1.2.2
3 0 =5 31
a. {33 leﬂ b. impossible c. |4 -1 =3 d. | =5
1 0 1 -2
-1 10]] 0 1] [-10 29 P
e | _3 1 317 29 24 . impossible
5
1.2.3 a. 9 b. [6 16 2]
2
1.2.4 a. This is the second column vector of the left matrix: 8
V5
2
b. Again, this is the second column vector of the left matrix: | 2\/a
12

c. This is the third column vector of the left matrix: {%}

1.2.5 a. True: (AB)T = BTAT =BTA
b. True: (ATB)T =BT (AT)T =BTA=BTAT
c. False: (ATB)T =BT(AT)" = BTA# BA
d. False: (AB)T = BTAT £ ATBT

1.2.6 Diagonal: (a), (b), (d), and (g)

Symmetric: (a), (b), (d), (g), (h), (j)
Triangular: (a), (b), (c), (d),(e), (F), (g), (1), and (1)
No antisymmetric matrices

Results of multiplications: b. { % 9
o | 0|0 O _
' al|lb b| ab ab

TR

o
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([0 01" _[o o 1 0][ 1 0] [1 0
“la a| " |a® @ & 11 1]]-1 1| " |o 1
2
5 101 2 0 2
SRR R A R
101 2 0 2
2
10 -1 00 -2 "
k|01 o =lo1 o 1.[_1?}:[_31(”
10 1 2.0 0

1.2.7 The matrices a and d have no transposes here. The matrices b and
f are transposes of each other. The matrices ¢ and e are transposes of each
other.

1.2.8

_|1+4a 1 B 1 1
AB_[ 1 0} BA_L—&-@ a]

So AB = BA only if a = 0.

L1 1 2 11
1.2.9 a. AT = ,BT=10 1| b.(AB)T=BTAT=1]0 0
0 0
10 11
T 11
e. AB)T=|F 0 M _ g 0
10 1 11

d. The matrix multiplication AT BT is impossible.

1.2.10

a bl 1 fa —b
[O a] ZF{O a}’ which exists when a # 0.

1.2.11 The expressions b, ¢, d, f, g, and i make no sense.

1.2.12
1 d =blla b| 1 ad — bc 0 |10
ad —bc | —c a c d|  ad-=bc 0 ad—be| |0 1

1.2.13 The trivial case is when a = b = ¢ = d = 0; then obviously

ad — bc = 0 and the matrix is not invertible. Let us suppose d # 0. (If we

suppose that any other entry is nonzero, the proof would work the same

way.) If ad = be, then the first row is a multiple of the second: we can
b. b

write a = gc and b = %d, so the matrix is A = ECC Edd .

To show that A is not invertible, we need to show that there is no matrix

a v 10
B = [c’ d’] such that AB = [0 1
AB is 1, then we have g(a'c + cd) = 1, so the lower left corner, which is

a'c + c'd, cannot be 0.

} But if the upper left corner of
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Labeling for solution 1.2.17
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1.2.14 Let C = AB. Then
n
Cij = Zai,kbk,ja
k=1
soif D=CT then
n
dij =¢ji= Zaj,kbk,i~
k=1
Let E=BTAT". Then
n n
€ij = briajn= ajibr;=di;,
k=1 k=1

so E=D. So (AB)T =BTAT.

1.2.15
1 a b 1 =z y 1 a+zx az+b+y
0 1 ¢ 01 z|=10 1 c+z
0 0 1 0 0 1 0 0 1
Sox=—a, z=—cand y =ac—b.

1.2.16 This is a straightforward computation, using (AB)" = BTAT:
(ATAT =AT(ATHT =474

1.2.17 With the labeling shown in the margin, the adjacency matrices are

Lot o
a Ar=11 0 1 Ag =
L1 0 01 0 1
1010
(2 1 1 2 3 3 6 5 5
b Az =1 2 1| AL=1|3 2 3| A;=|5 6 5
11 2 3 3 2 5 5 6
(10 11 11
Ay =11 10 11
|11 11 10
2 0 2 0 0 4 0 4 8 0 8 0
2 |0 2 0 2 3 |4 0 4 0 4+ |0 8 0 8
As = 2.0 2 0 As = 0 4 0 4 As = 8 0 8 0
L0 2 0 2 4 0 4 0 0 8 0 8
r0 16 0 16
5 |16 0 16 0
As = 0 16 0 16
L16 0 16 0
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The diagonal entries of A™ are the number of walks we can take of length
n that take us back to our starting point.

c. In a triangle, by symmetry there are only two different numbers: the
number a,, of walks of length n from a vertex to itself, and the number b,
of walks of length n from a vertex to a different vertex. The recurrence
relation relating these is

Gp+1 = 2b, and bpy1 = an + by.

These reflect that to walk from a vertex V; to itself in time n + 1, at time
n we must be at either V5 or V3, but to walk from a vertex V; to a different
vertex V5 in time n + 1, at time n we must be either at V; or at V3. If
lan, — bp| =1, then ay 1 — byy1 = [2ba — (ap + by)| = by — an| = 1.

d. Color two opposite vertices of the square black and the other two
white. Every move takes you from a vertex to a vertex of the opposite
color. Thus if you start at time 0 on black, you will be on black at all even
times, and on white at all odd times, and there will be no walks of odd
length from a vertex to itself.

e. Suppose such a coloring in black and white exists; then every walk
goes from black to white to black to white ... , in particular the (B, B) and
the (W, W) entries of A™ are 0 for all odd n, and the (B, W) and (W, B)
entries are 0 for all even n. Moreover, since the graph is connected, for any
pair of vertices there is a walk of some length m joining them, and then
the corresponding entry is nonzero for m, m + 2, m + 4, ... since you can
go from the point of departure to the point of arrival in time m, and then
bounce back and forth between this vertex and one of its neighbors.

Conversely, suppose the entries of A™ are zero or nonzero as described,
and look at the top line of A™, where n is chosen sufficiently large so that
any entry that is ever nonzero is nonzero for A"~! or A™. The entries
correspond to pairs of vertices (V1,V;); color in white the vertices V; for
which the (1,4) entry of A™ is zero, and in black those for which the (1,1)
entry of A"*! is zero. By hypothesis, we have colored all the vertices. It
remains to show that adjacent vertices have different colors. Take a path of
length m from V; to V;. If V; is adjacent to V;, then there certainly exists
a path of length m + 1 from V; to V;, namely the previous path, extended
by one to go from V; to V;. Thus V; and V; have opposite colors.

1.2.18
3 0 2 0 2 0 2 07 ro 7 0 7 0 7 0 67
0 3020 2 0 2 70 7 06 0 70
20 3 020 20 070 7 06 07
2 |10 2 0 3 0 2 0 2 3 |7 0 7 0 7 0 6 0
(a) A7= 202036020 A= 06 07 0 17T 07
020203 0 2 7T 06 07 0 70
202020 30 0706 0707
L0 2 0 2 0 2 0 34 L6 0 7 0 7 0 7 04




