		3 2 7	-1 1 1	$\left.\begin{array}{l}4 \\ 2 \\ 9\end{array}\right]$	$\left[\begin{array}{rrr} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right]$			1 -3 -4	
$\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$		3 -1 -2	-1 2 4	$\left.\begin{array}{r}4 \\ -2 \\ -3\end{array}\right]$				1 -5 -5	
d. $\left[\begin{array}{rrr}1 & 3 & 0 \\ 0 & -1 & 0 \\ 0 & -2 & 1\end{array}\right]$		0 1 0	5 -2 0	$\left.\begin{array}{r}-2 \\ 2 \\ 1\end{array}\right]$	e. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 1\end{array}\right]$			1 1 -5	
$\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$		0 1 0	5 -2 0	$\left.\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$	$\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1\end{array}\right]$			0 1 0	0

2.4.1 The only way you can write

$$
\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=a_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+a_{k}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k}
\end{array}\right]
$$

is if $a_{1}=a_{2}=\cdots=a_{k}=0$.
2.4.2 a. The vectors do form a basis for \mathbb{R}^{3}, since they are three linearly independent vectors: the matrix $\left[\begin{array}{rrr}1 & -2 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & -1\end{array}\right]$ row reduces to the identity. The basis is not orthogonal; for example, $\overrightarrow{\mathbf{w}}_{1} \cdot \overrightarrow{\mathbf{w}}_{2}=6 \neq 0$.
b. It is in the span of

$$
\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] \text {, but not in the span of }\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
4
\end{array}\right],\left[\begin{array}{c}
5 \\
1 \\
4.5
\end{array}\right]
$$

The matrix formed using those three vectors as the first three columns, and $\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$ as the fourth column, row reduces to $\left[\begin{array}{cccc}1 & 0 & 1 / 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
2.4.3 To make the basis orthonormal, each vector needs to be normalized to give it length 1 . This is done by dividing each vector by its length (see equation 1.4.6). So the orthonormal basis is $\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{r}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$. These vectors form a basis of \mathbb{R}^{2} because they are two linearly independent vectors in \mathbb{R}^{2}; they are orthogonal because

$$
\left[\begin{array}{l}
1 / \sqrt{2} \tag{1}\\
1 / \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{r}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]=0
$$

2.4.4 a. By row operations, we can bring the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & \alpha
\end{array}\right] \quad \text { to }\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & \alpha-1
\end{array}\right]
$$

Therefore, when $\alpha \neq 1$, the vectors are linearly independent.
b. If $\alpha=1$, the three vectors all lie in the plane of equation $x-y+z=0$.
2.4.5 To show that $\operatorname{Sp}\left(\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right)$ is a subspace of \mathbb{R}^{n}, we need to show that it is closed under addition and under multiplication by scalars. This follows from the computations

$$
\begin{aligned}
& c\left(a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+a_{k} \overrightarrow{\mathbf{v}}_{k}\right)=c a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+c a_{k} \overrightarrow{\mathbf{v}}_{k} \\
& \begin{aligned}
\left(a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+a_{k} \overrightarrow{\mathbf{v}}_{k}\right)+\left(b_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+b_{k} \overrightarrow{\mathbf{v}}_{k}\right) \\
\quad=\left(a_{1}+b_{1}\right) \overrightarrow{\mathbf{v}}_{1}+\cdots+\left(a_{k}+b_{k}\right) \overrightarrow{\mathbf{v}}_{k}
\end{aligned} .
\end{aligned}
$$

To see that it is the smallest subspace that contains the $\overrightarrow{\mathbf{v}}_{i}$, note that any subspace that contains the $\overrightarrow{\mathbf{v}}_{i}$ must contain their linear combinations, hence the smallest such subspace is $\operatorname{Sp}\left(\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right)$.

2.4 .6

2.4.7 Let A be an $n \times n$ matrix. The product $A^{\top} A$ is then

An orthogonal $n \times n$ matrix is a matrix whose columns form an orthonormal basis of \mathbb{R}^{n}.

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{cccc}
\vdots & \vdots & \ldots & \vdots \\
\overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{2} & \ldots & \overrightarrow{\mathbf{a}}_{n} \\
\vdots & \vdots & \ldots & \vdots
\end{array}\right]}^{A} \underbrace{\left[\begin{array}{ccc}
\ldots & \overrightarrow{\mathbf{a}}_{1}^{\top} & \ldots \\
\ldots & \overrightarrow{\mathbf{a}}_{2}^{\top} & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \overrightarrow{\mathbf{a}}_{n}^{\top} & \ldots
\end{array}\right]}_{A^{\top}} \underbrace{\left[\begin{array}{cccc}
\left|\overrightarrow{\mathbf{a}}_{1}\right|^{2} & \overrightarrow{\mathbf{a}}_{1} \cdot \overrightarrow{\mathbf{a}}_{2} & \ldots & \overrightarrow{\mathbf{a}}_{1} \cdot \overrightarrow{\mathbf{a}}_{n} \\
\overrightarrow{\mathbf{a}}_{2} \cdot \overrightarrow{\mathbf{a}}_{1} & \left|\overrightarrow{\mathbf{a}}_{2}\right|^{2} & \ldots & \overrightarrow{\mathbf{a}}_{2} \cdot \overrightarrow{\mathbf{a}}_{n} \\
\vdots & \vdots & \ddots & \ldots \\
\overrightarrow{\mathbf{a}}_{n} \cdot \overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{n} \cdot \overrightarrow{\mathbf{a}}_{2} & \ldots & \left|\overrightarrow{\mathbf{a}}_{n}\right|^{2}
\end{array}\right]}_{A^{\top} A} .
\end{aligned}
$$

The diagonal entries are given by the length squared of the columns of A, since $\overrightarrow{\mathbf{a}}_{i}^{\top} \overrightarrow{\mathbf{a}}_{i}=\overrightarrow{\mathbf{a}}_{i} \cdot \overrightarrow{\mathbf{a}}_{i}=\left|\overrightarrow{\mathbf{a}}_{i}\right|^{2}$. All other entries are dot products of two different columns of A. If $A^{\top} A=I$, so that all entries not on the diagonal are 0 , while those on the diagonal are 1 , then the columns of A are orthogonal and have length 1 . Thus they form an orthonormal basis of \mathbb{R}^{n}, and A is said to be orthogonal.

Similarly, if A is orthogonal, then the length of each of its column vectors is 1 , so that $A^{\top} A$ has 1's on the diagonal, and the dot product of two nonidentical columns is 0 , giving 0 for all other entries of $A^{\top} A$.

2.4 .8

2.4.9 To see that condition 2 implies condition 3 , first note that $2 \Longrightarrow 3$ is logically equivalent to (not 3$) \Longrightarrow$ (not 2). Now suppose $\left\{\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right\}$ is a linearly dependent set spanning V, so by definition 2.4.10, there exists a nontrivial solution to

$$
a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+a_{k} \overrightarrow{\mathbf{v}}_{k}=\mathbf{0}
$$

Without loss of generality, we may assume that a_{k} is nonzero (if it isn't, renumber the vectors so that a_{k} is nonzero). Using the above relation, we can solve for $\overrightarrow{\mathbf{v}}_{k}$ in terms of the other vectors:

$$
\overrightarrow{\mathbf{v}}_{k}=-\left(\frac{a_{1}}{a_{k}} \overrightarrow{\mathbf{v}}_{1}+\cdots+\frac{a_{k-1}}{a_{k}} \overrightarrow{\mathbf{v}}_{k-1}\right) .
$$

This implies that $\left\{\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right\}$ cannot be a minimal spanning set, because if we were to drop $\overrightarrow{\mathbf{v}}_{k}$ we could still form all the linear combinations as before. So (not 3$) \Longrightarrow$ (not 2), and we are finished.

To show that $3 \Longrightarrow 1$:
The vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}$ span V, so for any vector $\overrightarrow{\mathbf{w}} \in V$, there exist some numbers a_{1}, \ldots, a_{n} such that

$$
a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+a_{n} \overrightarrow{\mathbf{v}}_{n}=\overrightarrow{\mathbf{w}}
$$

Thus, if we add this vector to $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}$, we will have a linearly dependent set because

$$
a_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+a_{n} \overrightarrow{\mathbf{v}}_{n}-\overrightarrow{\mathbf{w}}=\mathbf{0}
$$

is a nontrivial linear combination of the vectors that equals $\mathbf{0}$. Since $\overrightarrow{\mathbf{w}}$ can be any vector in $V,\left\{\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}\right\}$ is a maximal linearly independent set.
2.4.10 Let u be the coefficient of $\overrightarrow{\mathbf{v}}_{1}$ and v the coefficient of $\overrightarrow{\mathbf{v}}_{2}$. The equations are then $u+v=x$ and $u+3 v=y$, which could also be written as the matrix multiplication

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This can be solved for u and v, to give

$$
\begin{aligned}
& u=(3 x-y) / 2 \\
& v=(y-x) / 2
\end{aligned}
$$

Thus we have

$$
\left[\begin{array}{r}
3 \\
-5
\end{array}\right]=\frac{3 \cdot 3+5}{2} \overrightarrow{\mathbf{v}}_{1}+\frac{-5-3}{2} \overrightarrow{\mathbf{v}}_{2}=7 \overrightarrow{\mathbf{v}}_{1}-4 \overrightarrow{\mathbf{v}}_{2}=7\left[\begin{array}{l}
1 \\
1
\end{array}\right]-4\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

2.4.11 a. For any n, we have $n+1$ linear equations for the $n+1$ unknowns $a_{0, n}, a_{1, n}, \ldots, a_{n, n}$, which say
$a_{0, n}\left(\frac{0}{n}\right)^{k}+a_{1, n}\left(\frac{1}{n}\right)^{k}+a_{2, n}\left(\frac{2}{n}\right)^{k}+\cdots+a_{n, n}\left(\frac{n}{n}\right)^{k}=\int_{0}^{1} x^{k} d x=\frac{1}{k+1}$,
one for each $k=0,1, \ldots, n$.

These systems of linear equations are:

- When $n=1$

$$
\begin{aligned}
& a_{0,1} 1+a_{1,1} 1=1 \\
& a_{0,1} 0+a_{1,1} 1=1 / 2
\end{aligned}
$$

- When $n=2$

$$
\begin{aligned}
a_{0,2} 1+a_{1,2} 1+a_{2,2} 1 & =1 \\
a_{0,2} 0+a_{1,2}(1 / 2)+a_{2,2} 1 & =1 / 2 \\
a_{0,2} 0+a_{1,2}(1 / 4)+a_{2,2} 1 & =1 / 3
\end{aligned}
$$

- When $n=3$

The system of equations for $n=3$ could be written as the augmented matrix $[A \mid \overrightarrow{\mathbf{b}}]$:

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 / 3 & 2 / 3 & 1 & 1 / 2 \\
0 & 1 / 9 & 4 / 9 & 1 & 1 / 3 \\
0 & 1 / 27 & 8 / 27 & 1 & 1 / 4
\end{array}\right] .
$$

$$
\begin{aligned}
a_{0,3} 1+a_{1,3} 1+a_{2,3} 1+a_{3,3} 1 & =1 \\
a_{0,3} 0+a_{1,3}(1 / 3)+a_{2,3}(2 / 3)+a_{3,3} 1 & =1 / 2 \\
a_{0,3} 0+a_{1,3}(1 / 9)+a_{2,3}(4 / 9)+a_{3,3} 1 & =1 / 3 \\
a_{0,3} 0+a_{1,3}(1 / 27)+a_{2,3}(8 / 27)+a_{3,3} 1 & =1 / 4 .
\end{aligned}
$$

b. These wouldn't be too bad to solve by hand (although already the last would be distinctly unpleasant). We wrote a little Matlab m-file to do it systematically:

```
function [N,b,c] = EqSp(n)
N = zeros(n+1); % make an n+1 }\timesn+1\mathrm{ matrix of zeros
c=linspace(1,n+1,n+1); % make a place holder for the right side
for i=1:n+1
    for j=1:n+1
    N(i,j)= ((j-1)/n)^(i-1); % put the right coefficients in the matrix
end
c(i)=1/c(i); % put the right entries in the right side
end
b=c'; % our c was a row vector, take its transpose
c=N% this solves the system of linear equations
```

If you write and save this file as 'EqSp.m', and then type
$[\mathrm{A}, \mathrm{b}, \mathrm{c}]=\operatorname{EqSp}(5)$, for the case when $n=5$,
you will get

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5 & 1 \\
0 & 1 / 25 & 4 / 25 & 9 / 25 & 16 / 25 & 1 \\
0 & 1 / 125 & 8 / 125 & 27 / 125 & 64 / 125 & 1 \\
0 & 1 / 625 & 16 / 625 & 81 / 625 & 256 / 625 & 1 \\
0 & 1 / 3125 & 32 / 3125 & 243 / 3125 & 541 / 1651 & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
1 / 2 \\
1 / 3 \\
1 / 4 \\
1 / 5 \\
1 / 6
\end{array}\right], \quad c=\left[\begin{array}{c}
19 / 288 \\
25 / 96 \\
25 / 144 \\
25 / 144 \\
25 / 96 \\
19 / 288
\end{array}\right] .
$$

This corresponds to the equation $A c=b$, where the matrix A is the matrix of coefficients for $n=5$, and the vector c is the desired set of coefficients - the solutions when $n=5$.

When $n=1,2,3$, the coefficients - i.e., the solutions to the systems of equations in part a - are

For instance, for $n=2$, we have

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right]
$$

$$
\left[\begin{array}{r}
0.0118 \\
0.1141 \\
-0.2362 \\
1.2044 \\
-3.7636 \\
10.3135 \\
-22.6521 \\
41.7176 \\
-63.9006 \\
82.5706 \\
-89.7629 \\
82.5829 \\
-63.9189 \\
41.7345 \\
-22.6633 \\
10.3191 \\
-3.7656 \\
1.2050 \\
-0.2363 \\
0.1141 \\
0.0118
\end{array}\right]
$$

Coefficients when $n=20$.

$$
\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right], \quad\left[\begin{array}{l}
1 / 6 \\
2 / 3 \\
1 / 6
\end{array}\right], \quad\left[\begin{array}{l}
1 / 8 \\
3 / 8 \\
3 / 8 \\
1 / 8
\end{array}\right]
$$

The approximations to $\int_{0}^{1} \frac{d x}{1+x}=\log 2=0.69314718055995 \ldots$ obtained with these coefficients are .75 for $n=1, \frac{25}{36}=.6944 \ldots$ for $n=2$, and $\frac{111}{160}=.69375$ for $n=3$.
c. If you compute

$$
\sum_{i=0}^{5} a_{i, 5} \frac{1}{(i / 5)+1} \approx \int_{0}^{1} \frac{d x}{1+x}=\log 2=0.69314718055995 \ldots
$$

you will find 0.69316302910053 , which is a pretty good approximation for a Riemann sum with six terms. For instance, the midpoint Riemann sum gives

$$
\frac{1}{5} \sum_{i=1}^{5} \frac{1}{((2 i-1) / 10)} \approx 0.69190788571594
$$

which is a much worse approximation. But this scheme runs into trouble. All the coefficients are positive up to $n=7$, but for $n=8$ they are

$$
\left[\begin{array}{c}
248 / 7109 \\
578 / 2783 \\
-111 / 3391 \\
97 / 262 \\
-454 / 2835 \\
97 / 262 \\
-111 / 3391 \\
578 / 2783 \\
248 / 7109
\end{array}\right] \approx\left[\begin{array}{r}
0.0349 \\
0.2077 \\
-0.0327 \\
0.3702 \\
-0.1601 \\
0.3702 \\
-0.0327 \\
0.2077 \\
0.0349
\end{array}\right]
$$

and the approximation scheme starts depending on cancellations. This is much worse when $n=20$, where the coefficients are as shown in the margin.

Despite these bad sign variations, the Riemann sum works pretty well: the approximation to the integral above gives 0.69314718055995 , which is $\ln 2$ to the precision of the machine.
2.4.12 a. If we identify $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$, the matrices $I, A_{t}, A_{t}^{2}, A_{t}^{3}$ become

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
t \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
4 t \\
0 \\
4
\end{array}\right],\left[\begin{array}{c}
8 \\
12 t \\
0 \\
8
\end{array}\right]
$$

The matrix with these columns can be brought by row operations to

$$
\left[\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & t & 4 t & 12 t \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus we see that if $t \neq 0$, the subspace V_{t} has dimension 2 , and if $t=0$, then V_{t} has dimension 1.
b. We need to show that the set W_{t} is closed under addition and multiplication by scalars. If $B_{1} A=A B_{1}$ and $B_{2} A=A B_{2}$, adding the equations gives

$$
\left(B_{1}+B_{2}\right) A=B_{1} A+B_{2} A=A B_{1}+A B_{2}=A\left(B_{1}+B_{2}\right)
$$

Similarly, if $B A=A B$, then $\left(a B_{1}\right) A=a B_{1} A=a A B_{1}=A\left(a B_{1}\right)$.
The multiplications

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
2 & t \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 a & t a+2 b \\
2 c & t c+2 d
\end{array}\right] \text { and }\left[\begin{array}{ll}
2 & t \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
2 a+t c & 2 b+t d \\
2 c & 2 d
\end{array}\right]
$$

give the equations

$$
2 a=2 a+t c, t a+2 b=2 b+t d, 2 c=2 c, t c+2 d=2 d
$$

for the subspace W_{t}. If $t=0$, all the equations are automatically satisfied, so $W_{0}=\operatorname{Mat}(2,2)$. But if $t \neq 0$, these equations boil down to $a=d, c=0$. So W_{t} has dimension 2 if $t \neq 0$.
c. Since $A A^{k}=A^{k+1}=A^{k} A$, we see that the matrices that span V_{t} are all in W_{t}, so $V_{t} \subset W_{t}$. If $t=0$, they are different, since V_{t} has dimension 1 and W_{t} has dimension 4. But if $t \neq 0$, they both have dimension 2 , so they are equal.
2.4.13 In the process of row reducing $A=\left[\begin{array}{llll}1 & a & a & a \\ 1 & 1 & a & a \\ 1 & 1 & 1 & a \\ 1 & 1 & 1 & 1\end{array}\right]$, you will come to the matrix

$$
\left[\begin{array}{cccc}
1 & a & a & a \\
0 & 1-a & 0 & 0 \\
0 & 1-a & 1-a & 0 \\
0 & 1-a & 1-a & 1-a
\end{array}\right]
$$

If $a=1$, the matrix will not row reduce to the identity, because you can't choose a pivotal 1 in the second column, so one necessary condition for A to be invertible is that $a \neq 1$. Let us suppose that this is the case, we can now row reduce two steps further to find

$$
\left[\begin{array}{cccc}
1 & 0 & a & a \\
0 & 1 & 0 & 0 \\
0 & 0 & 1-a & 0 \\
0 & 0 & 1-a & 1-a
\end{array}\right], \quad \text { and then }\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1-a
\end{array}\right]
$$

The next step row reduces the matrix to the identity, so the matrix is invertible if and only if $a \neq 1$.
2.5.1 a. The vectors $\overrightarrow{\mathbf{v}}_{1}$ and $\overrightarrow{\mathbf{v}}_{3}$ are in the kernel of A, since $A \overrightarrow{\mathbf{v}}_{1}=\mathbf{0}$ and $A \overrightarrow{\mathbf{v}}_{3}=\mathbf{0}$. But $\overrightarrow{\mathbf{v}}_{2}$ is not, since $A \overrightarrow{\mathbf{v}}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$. The vector $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ is in the image of A.
b. The matrix T represents a transformation from \mathbb{R}^{5} to \mathbb{R}^{3}; it takes a vector in \mathbb{R}^{5} and gives a vector in \mathbb{R}^{3}. Therefore, $\overrightarrow{\mathbf{w}}_{4}$ has the right height to be in the kernel (although it isn't), and $\overrightarrow{\mathbf{w}}_{1}$ and $\overrightarrow{\mathbf{w}}_{3}$ have the right height to be in its image.

Since the sum of the second and fifth columns of T is $\overrightarrow{\mathbf{0}}$, one element of the kernel is $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$.
2.5.2 a. False (unless $n=m$)
b. True
c. True
d. False (unless $n=m$)
e. False (the nullity of T is the dimension of its kernel, which is $n-m$)
f. False (unless $n=m$) g. False (unless $n=m$)
2.5.3 nullity $T=\operatorname{dim}$ ker $T=$ number of nonpivotal columns of T;

$$
\text { rank of } \begin{aligned}
T & =\operatorname{dim} \text { image } T \\
& =\text { number of linearly independent columns of } T \\
& =\text { number of pivotal columns of } T .
\end{aligned}
$$

rank $T+$ nullity $T=\operatorname{dim}$ domain T
2.5.4 An $n \times m$ matrix A represents a linear function from \mathbb{R}^{m} to \mathbb{R}^{n}. If \tilde{A} has at least one row containing all 0 's, then A has rank $<n$. Indeed, the rank of A is the number of pivotal 1's of \tilde{A}, and there is at most one per row.

If \tilde{A} has exactly one row of 0 's, then the same argument says that the rank of A is $n-1$.
2.5.5 By definition 1.1 .5 of a subspace, we need to show that the kernel and the image of a linear transformation T are closed under addition and multiplication by scalars. These are straightforward computations, using the linearity of T.
The kernel of T : If $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in$ ker T, i.e., if $T(\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{0}}$ and $T(\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{0}}$, then

$$
T(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=T(\overrightarrow{\mathbf{v}})+T(\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}} \quad \text { and } \quad T(a \overrightarrow{\mathbf{v}})=a T(\overrightarrow{\mathbf{v}})=a \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}
$$

so $\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}} \in \operatorname{ker} T$ and $a \overrightarrow{\mathbf{v}} \in \operatorname{ker} T$.

The image of T : If $\overrightarrow{\mathbf{v}}=T\left(\overrightarrow{\mathbf{v}}_{1}\right), \overrightarrow{\mathbf{w}}=T\left(\overrightarrow{\mathbf{w}}_{1}\right)$, then

$$
\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}=T\left(\overrightarrow{\mathbf{w}}_{1}\right)+T\left(\overrightarrow{\mathbf{v}}_{1}\right)=T\left(\overrightarrow{\mathbf{w}}_{1}+\overrightarrow{\mathbf{v}}_{1}\right) \quad \text { and } \quad a \overrightarrow{\mathbf{v}}=a T\left(\overrightarrow{\mathbf{v}}_{1}\right)=T\left(a \overrightarrow{\mathbf{v}}_{1}\right)
$$

So the image is also closed under addition and multiplication by scalars.
2.5.6 a. If you row reduce $\left[\begin{array}{lll}1 & 1 & 3 \\ 2 & 2 & 6\end{array}\right]$ you get $\left[\begin{array}{lll}1 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$. Thus the first column $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is a basis of the image (which has dimension 1), and the two vectors

$$
\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]
$$

which are the solutions of $x+y+3 z=0$ with respectively $y=1, z=0$ and $y=0, z=1$, form a basis of the kernel.
b. If you row reduce $\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 1 & 1 \\ -1 & 4 & 5\end{array}\right]$ you get $\left[\begin{array}{ccc}1 & 0 & 1 / 3 \\ 0 & 1 & 4 / 3 \\ 0 & 0 & 0\end{array}\right]$. Thus the first two columns $\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$ form a basis of the image (which has dimension 2), and the vector $\left[\begin{array}{c}-1 / 3 \\ -4 / 3 \\ 1\end{array}\right]$ is a basis of the kernel.
c. The matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ row reduces to $\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$. Again, the first two columns $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ form a basis of the image, and the vector $\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$ forms a basis of the kernel.
2.5.7 a. $n=3$. The last three columns of the matrix are clearly linearly independent, so the matrix has rank at least 3 , and it has rank at most 3 because there can be at most three linearly independent vectors in \mathbb{R}^{3}.

In this case, all triples of vectors are linearly independent except columns 3,4 , and 6 .
b. Yes. For example, the first three columns are linearly independent, since the matrix composed of just those columns row reduces to the identity.
c. The 3 rd , 4 th, and 6 th columns are linearly dependent.
d. You cannot choose freely the values of x_{1}, x_{2}, x_{5}. Since the rank of the matrix is 3 , three variables must correspond to pivotal (linearly independent) columns. For the variables x_{1}, x_{2}, x_{5} to be freely chosen, i.e., nonpivotal, x_{3}, x_{4}, x_{6} would have to correspond to linearly independent columns.

