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d.

⎡

⎣
1 3 −1 4
1 2 1 2
3 7 1 9

⎤

⎦

⎡

⎣
1 0 0
−1 1 0
−3 0 1

⎤

⎦

⎡

⎣
1 3 −1 4
0 −1 2 −2
0 −2 4 −3

⎤

⎦

⎡

⎣
1 3 0
0 −1 0
0 −2 1

⎤

⎦

⎡

⎣
1 0 5 −2
0 1 −2 2
0 0 0 1

⎤

⎦

⎡

⎣
1 0 2
0 1 −2
0 0 1

⎤

⎦

⎡

⎣
1 0 5 0
0 1 −2 0
0 0 0 1

⎤

⎦

. e.

⎡

⎣
1 1 1 1
2 −3 3 3
1 −4 2 2

⎤

⎦

⎡

⎣
1 0 0
−2 1 0
−1 0 1

⎤

⎦

⎡

⎣
1 1 1 1
0 −5 1 1
0 −5 1 1

⎤

⎦

⎡

⎣
1 0 0
0 −1

5 0
0 0 1

⎤

⎦

⎡

⎣
1 1 1 1
0 1 −1

5 − 1
5

0 −5 1 1

⎤

⎦

⎡

⎣
1 −1 0
0 1 0
0 5 1

⎤

⎦

⎡

⎣
1 0 6

5
6
5

0 1 − 1
5 − 1

5
0 0 0 0

⎤

⎦

.

2.4.1 The only way you can write
⎡

⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎦ = a1

⎡

⎢⎢⎣

1
0
...
0

⎤

⎥⎥⎦+ · · · + ak

⎡

⎢⎢⎣

0
...
0
1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a1

a2
...

ak

⎤

⎥⎥⎦ ,

is if a1 = a2 = · · · = ak = 0.

2.4.2 a. The vectors do form a basis for R3, since they are three lin-

early independent vectors: the matrix

⎡

⎣
1 −2 −1
2 1 1
3 2 −1

⎤

⎦ row reduces to the

identity. The basis is not orthogonal; for example, w⃗1 · w⃗2 = 6 ̸= 0.

b. It is in the span of
⎡

⎣
4
2
1

⎤

⎦ ,

⎡

⎣
3
0
4

⎤

⎦ ,

⎡

⎣
2
1
4

⎤

⎦ , but not in the span of

⎡

⎣
4
2
1

⎤

⎦ ,

⎡

⎣
3
0
4

⎤

⎦ ,

⎡

⎣
5
1

4.5

⎤

⎦ .

The matrix formed using those three vectors as the first three columns, and⎡

⎣
4
1
2

⎤

⎦ as the fourth column, row reduces to

⎡

⎣
1 0 1/2 0
0 1 1 0
0 0 0 1

⎤

⎦.

2.4.3 To make the basis orthonormal, each vector needs to be normalized
to give it length 1. This is done by dividing each vector by its length (see

equation 1.4.6). So the orthonormal basis is
[

1/
√

2
1/
√

2

]
,

[
1/
√

2
−1/
√

2

]
. These

vectors form a basis of R2 because they are two linearly independent vectors
in R2; they are orthogonal because

[
1/
√

2
1/
√

2

]
·
[

1/
√

2
−1/
√

2

]
= 0. (1)
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2.4.4 a. By row operations, we can bring the matrix
⎡

⎣
1 1 0
1 2 1
0 1 α

⎤

⎦ to

⎡

⎣
1 0 −1
0 1 1
0 0 α− 1

⎤

⎦ .

Therefore, when α ̸= 1, the vectors are linearly independent.

b. If α = 1, the three vectors all lie in the plane of equation x−y+z = 0.

2.4.5 To show that Sp (v⃗1, . . . , v⃗k) is a subspace of Rn, we need to show
that it is closed under addition and under multiplication by scalars. This
follows from the computations

c(a1v⃗1 + · · · + akv⃗k) = ca1v⃗1 + · · · + cakv⃗k;

(a1v⃗1 + · · · + akv⃗k) + (b1v⃗1 + · · · + bkv⃗k)

= (a1 + b1)v⃗1 + · · · + (ak + bk)v⃗k.

To see that it is the smallest subspace that contains the v⃗i, note that
any subspace that contains the v⃗i must contain their linear combinations,
hence the smallest such subspace is Sp (v⃗1, . . . , v⃗k).

2.4.6

2.4.7 Let A be an n× n matrix. The product A⊤A is then
A︷ ︸︸ ︷⎡

⎢⎢⎢⎣

...
... · · ·

...

a⃗1 a⃗2 . . . a⃗n
...

... · · ·
...

⎤

⎥⎥⎥⎦

⎡

⎢⎣

. . . a⃗⊤1 . . .

. . . a⃗⊤2 . . .

. . . . . . . . .

. . . a⃗⊤n . . .

⎤

⎥⎦

︸ ︷︷ ︸
A⊤

⎡

⎢⎢⎣

|⃗a1|2 a⃗1 · a⃗2 . . . a⃗1 · a⃗n

a⃗2 · a⃗1 |⃗a2|2 . . . a⃗2 · a⃗n
...

...
. . . . . .

a⃗n · a⃗1 a⃗n · a⃗2 . . . |⃗an|2

⎤

⎥⎥⎦ .

︸ ︷︷ ︸
A⊤A

An orthogonal n × n matrix is
a matrix whose columns form an
orthonormal basis of Rn.

The diagonal entries are given by the length squared of the columns
of A, since a⃗⊤i a⃗i = a⃗i · a⃗i = |⃗ai|2. All other entries are dot products of
two different columns of A. If A⊤A = I, so that all entries not on the
diagonal are 0, while those on the diagonal are 1, then the columns of A
are orthogonal and have length 1. Thus they form an orthonormal basis of
Rn, and A is said to be orthogonal.

Similarly, if A is orthogonal, then the length of each of its column vectors
is 1, so that A⊤A has 1’s on the diagonal, and the dot product of two non-
identical columns is 0, giving 0 for all other entries of A⊤A.

2.4.8
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2.4.9 To see that condition 2 implies condition 3, first note that 2 =⇒ 3
is logically equivalent to (not 3) =⇒ (not 2). Now suppose {v⃗1, . . . , v⃗k}
is a linearly dependent set spanning V , so by definition 2.4.10, there exists
a nontrivial solution to

a1v⃗1 + · · · + akv⃗k = 0.

Without loss of generality, we may assume that ak is nonzero (if it isn’t,
renumber the vectors so that ak is nonzero). Using the above relation, we
can solve for v⃗k in terms of the other vectors:

v⃗k = −
(

a1

ak
v⃗1 + · · · + ak−1

ak
v⃗k−1

)
.

This implies that {v⃗1, . . . , v⃗k} cannot be a minimal spanning set, because
if we were to drop v⃗k we could still form all the linear combinations as
before. So (not 3) =⇒ (not 2), and we are finished.

To show that 3 =⇒ 1:
The vectors v⃗1, . . . , v⃗k span V , so for any vector w⃗ ∈ V , there exist

some numbers a1, . . . , an such that

a1v⃗1 + · · · + anv⃗n = w⃗.

Thus, if we add this vector to v⃗1, . . . , v⃗k, we will have a linearly dependent
set because

a1v⃗1 + · · · + anv⃗n − w⃗ = 0

is a nontrivial linear combination of the vectors that equals 0. Since w⃗ can
be any vector in V , {v⃗1, . . . , v⃗k} is a maximal linearly independent set.

2.4.10 Let u be the coefficient of v⃗1 and v the coefficient of v⃗2. The
equations are then u + v = x and u + 3v = y, which could also be written
as the matrix multiplication

[
1 1
1 3

] [
u
v

]
=
[

x
y

]
.

This can be solved for u and v, to give

u = (3x− y)/2

v = (y − x)/2.

Thus we have
[

3
−5

]
=

3 · 3 + 5
2

v⃗1 +
−5− 3

2
v⃗2 = 7v⃗1 − 4v⃗2 = 7

[
1
1

]
− 4

[
1
3

]
.

2.4.11 a. For any n, we have n+1 linear equations for the n+1 unknowns
a0,n, a1,n, . . . , an,n, which say

a0,n

(
0
n

)k

+a1,n

(
1
n

)k

+a2,n

(
2
n

)k

+· · ·+an,n

(n

n

)k
=
∫ 1

0
xkdx =

1
k + 1

,

one for each k = 0, 1, . . . , n.
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These systems of linear equations are:
• When n = 1

a0,11 + a1,11 = 1

a0,10 + a1,11 = 1/2

• When n = 2
a0,21 + a1,21 + a2,21 = 1

a0,20 + a1,2(1/2) + a2,21 = 1/2

a0,20 + a1,2(1/4) + a2,21 = 1/3

• When n = 3
The system of equations for

n = 3 could be written as the aug-
mented matrix [A|b⃗]:
⎡

⎢⎢⎣

1 1 1 1 1
0 1/3 2/3 1 1/2
0 1/9 4/9 1 1/3
0 1/27 8/27 1 1/4

⎤

⎥⎥⎦ .

a0,31 + a1,31 + a2,31 + a3,31 = 1

a0,30 + a1,3(1/3) + a2,3(2/3) + a3,31 = 1/2

a0,30 + a1,3(1/9) + a2,3(4/9) + a3,31 = 1/3

a0,30 + a1,3(1/27) + a2,3(8/27) + a3,31 = 1/4.

b. These wouldn’t be too bad to solve by hand (although already the
last would be distinctly unpleasant). We wrote a little Matlab m-file to
do it systematically:

function [N,b,c] = EqSp(n)

N = zeros(n+1); % make an n+1 × n+1 matrix of zeros

c=linspace(1,n+1,n+1); % make a place holder for the right side

for i=1:n+1

for j=1:n+1

N(i,j)= ((j-1)/n)^(i-1); % put the right coefficients in the matrix

end

c(i)=1/c(i); % put the right entries in the right side

end

b=c’; % our c was a row vector, take its transpose

c=N%
¯

this solves the system of linear equations

If you write and save this file as ‘EqSp.m’, and then type

[A,b,c]=EqSp(5), for the case when n = 5,

you will get

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
0 1/5 2/5 3/5 4/5 1
0 1/25 4/25 9/25 16/25 1
0 1/125 8/125 27/125 64/125 1
0 1/625 16/625 81/625 256/625 1
0 1/3125 32/3125 243/3125 541/1651 1

⎤

⎥⎥⎥⎥⎥⎥⎦
, b =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1/2
1/3
1/4
1/5
1/6

⎤

⎥⎥⎥⎥⎥⎥⎦
, c =

⎡

⎢⎢⎢⎢⎢⎢⎣

19/288
25/96
25/144
25/144
25/96
19/288

⎤

⎥⎥⎥⎥⎥⎥⎦
.

This corresponds to the equation Ac = b, where the matrix A is the
matrix of coefficients for n = 5, and the vector c is the desired set of
coefficients – the solutions when n = 5.
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When n = 1, 2,3, the coefficients – i.e., the solutions to the systems of
equations in part a – are

For instance, for n = 2, we have
[

1 1
0 1

] [
1/2
1/2

]
=

[
1

1/2

]
.

[
1/2
1/2

]
,

⎡

⎣
1/6
2/3
1/6

⎤

⎦ ,

⎡

⎢⎣

1/8
3/8
3/8
1/8

⎤

⎥⎦ .

The approximations to
∫ 1
0

dx
1+x = log 2 = 0.69314718055995 . . . obtained

with these coefficients are .75 for n = 1, 25
36 = .6944 . . . for n = 2, and

111
160 = .69375 for n = 3.

c. If you compute
5∑

i=0

ai,5
1

(i/5) + 1
≈
∫ 1

0

dx

1 + x
= log 2 = 0.69314718055995 . . .

you will find 0.69316302910053, which is a pretty good approximation for
a Riemann sum with six terms. For instance, the midpoint Riemann sum
gives

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0118
0.1141
−0.2362

1.2044
−3.7636
10.3135
−22.6521

41.7176
−63.9006

82.5706
−89.7629

82.5829
−63.9189

41.7345
−22.6633

10.3191
−3.7656

1.2050
−0.2363

0.1141
0.0118

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Coefficients when n = 20.

1
5

5∑

i=1

1
((2i− 1)/10)

≈ 0.69190788571594,

which is a much worse approximation. But this scheme runs into trouble.
All the coefficients are positive up to n = 7, but for n = 8 they are

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

248/7109
578/2783
−111/3391

97/262
−454/2835

97/262
−111/3391

578/2783
248/7109

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0349
0.2077
−0.0327

0.3702
−0.1601

0.3702
−0.0327

0.2077
0.0349

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the approximation scheme starts depending on cancellations. This is
much worse when n = 20, where the coefficients are as shown in the margin.

Despite these bad sign variations, the Riemann sum works pretty well:
the approximation to the integral above gives 0.69314718055995, which is
ln 2 to the precision of the machine.

2.4.12 a. If we identify
[

a b
c d

]
with

⎡

⎢⎣

a
b
c
d

⎤

⎥⎦, the matrices I, At, A2
t , A

3
t

become
⎡

⎢⎣

1
0
0
1

⎤

⎥⎦ ,

⎡

⎢⎣

2
t
0
2

⎤

⎥⎦ ,

⎡

⎢⎣

4
4t
0
4

⎤

⎥⎦ ,

⎡

⎢⎣

8
12t
0
8

⎤

⎥⎦ .
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The matrix with these columns can be brought by row operations to
⎡

⎢⎣

1 2 4 8
0 t 4t 12t
0 0 0 0
0 0 0 0

⎤

⎥⎦ .

Thus we see that if t ̸= 0, the subspace Vt has dimension 2, and if t = 0,
then Vt has dimension 1.

b. We need to show that the set Wt is closed under addition and multi-
plication by scalars. If B1A = AB1 and B2A = AB2, adding the equations
gives

(B1 + B2)A = B1A + B2A = AB1 + AB2 = A(B1 + B2).

Similarly, if BA = AB, then (aB1)A = aB1A = aAB1 = A(aB1).
The multiplications

[
a b
c d

] [
2 t
0 2

]
=
[

2a ta + 2b
2c tc + 2d

]
and

[
2 t
0 2

] [
a b
c d

]
=
[

2a + tc 2b + td
2c 2d

]

give the equations

2a = 2a + tc, ta + 2b = 2b + td, 2c = 2c, tc + 2d = 2d

for the subspace Wt. If t = 0, all the equations are automatically satisfied,
so W0 = Mat (2, 2). But if t ̸= 0, these equations boil down to a = d, c = 0.
So Wt has dimension 2 if t ̸= 0.

c. Since A Ak = Ak+1 = Ak A, we see that the matrices that span Vt are
all in Wt, so Vt ⊂Wt. If t = 0, they are different, since Vt has dimension 1
and Wt has dimension 4. But if t ̸= 0, they both have dimension 2, so they
are equal.

2.4.13 In the process of row reducing A =

⎡

⎢⎣

1 a a a
1 1 a a
1 1 1 a
1 1 1 1

⎤

⎥⎦ , you will come

to the matrix
⎡

⎢⎣

1 a a a
0 1− a 0 0
0 1− a 1− a 0
0 1− a 1− a 1− a

⎤

⎥⎦ .

If a = 1, the matrix will not row reduce to the identity, because you can’t
choose a pivotal 1 in the second column, so one necessary condition for A
to be invertible is that a ̸= 1. Let us suppose that this is the case, we can
now row reduce two steps further to find

⎡

⎢⎣

1 0 a a
0 1 0 0
0 0 1− a 0
0 0 1− a 1− a

⎤

⎥⎦ , and then

⎡

⎢⎣

1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1− a

⎤

⎥⎦
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The next step row reduces the matrix to the identity, so the matrix is
invertible if and only if a ̸= 1.

2.5.1 a. The vectors v⃗1 and v⃗3 are in the kernel of A, since Av⃗1 = 0 and

Av⃗3 = 0. But v⃗2 is not, since Av⃗2 =

⎡

⎣
2
3
3

⎤

⎦. The vector

⎡

⎣
2
3
3

⎤

⎦ is in the

image of A.

b. The matrix T represents a transformation from R5 to R3; it takes a
vector in R5 and gives a vector in R3. Therefore, w⃗4 has the right height
to be in the kernel (although it isn’t), and w⃗1 and w⃗3 have the right height
to be in its image.

Since the sum of the second and fifth columns of T is 0⃗, one element of

the kernel is

⎡

⎢⎢⎢⎣

0
1
0
0
1

⎤

⎥⎥⎥⎦
.

2.5.2 a. False (unless n = m) b. True c. True d. False (unless
n = m)

e. False (the nullity of T is the dimension of its kernel, which is n−m)

f. False (unless n = m) g. False (unless n = m)

2.5.3 nullity T = dim ker T = number of nonpivotal columns of T ;

rank of T = dim image T

= number of linearly independent columns of T

= number of pivotal columns of T .

rank T+ nullity T = dim domain T

2.5.4 An n×m matrix A represents a linear function from Rm to Rn. If
Ã has at least one row containing all 0’s, then A has rank < n. Indeed, the
rank of A is the number of pivotal 1’s of Ã, and there is at most one per
row.

If Ã has exactly one row of 0’s, then the same argument says that the
rank of A is n− 1.

2.5.5 By definition 1.1.5 of a subspace, we need to show that the kernel
and the image of a linear transformation T are closed under addition and
multiplication by scalars. These are straightforward computations, using
the linearity of T .

The kernel of T : If v⃗, w⃗ ∈ ker T , i.e., if T (v⃗) = 0⃗ and T (w⃗) = 0⃗, then

T (v⃗ + w⃗) = T (v⃗) + T (w⃗) = 0⃗ + 0⃗ = 0⃗ and T (av⃗) = aT (v⃗) = a0⃗ = 0⃗,

so v⃗ + w⃗ ∈ ker T and av⃗ ∈ ker T .
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The image of T : If v⃗ = T (v⃗1), w⃗ = T (w⃗1), then

v⃗ + w⃗ = T (w⃗1) + T (v⃗1) = T (w⃗1 + v⃗1) and av⃗ = aT (v⃗1) = T (av⃗1),

So the image is also closed under addition and multiplication by scalars.

2.5.6 a. If you row reduce
[

1 1 3
2 2 6

]
you get

[
1 1 3
0 0 0

]
. Thus the first

column
[

1
2

]
is a basis of the image (which has dimension 1), and the two

vectors
⎡

⎣
−1

1
0

⎤

⎦ and

⎡

⎣
−3

0
1

⎤

⎦ ,

which are the solutions of x+ y +3z = 0 with respectively y = 1, z = 0 and
y = 0, z = 1, form a basis of the kernel.

b. If you row reduce

⎡

⎣
1 2 3
−1 1 1
−1 4 5

⎤

⎦ you get

⎡

⎣
1 0 1/3
0 1 4/3
0 0 0

⎤

⎦. Thus the

first two columns

⎡

⎣
1
−1
−1

⎤

⎦ and

⎡

⎣
2
1
4

⎤

⎦ form a basis of the image (which has

dimension 2), and the vector

⎡

⎣
−1/3
−4/3

1

⎤

⎦ is a basis of the kernel.

c. The matrix

⎡

⎣
1 1 1
1 2 3
2 3 4

⎤

⎦ row reduces to

⎡

⎣
1 0 −1
0 1 2
0 0 0

⎤

⎦. Again, the

first two columns

⎡

⎣
1
1
2

⎤

⎦ and

⎡

⎣
1
2
3

⎤

⎦ form a basis of the image, and the vector

⎡

⎣
1
−2

1

⎤

⎦ forms a basis of the kernel.

2.5.7 a. n = 3. The last three columns of the matrix are clearly linearly
independent, so the matrix has rank at least 3, and it has rank at most 3
because there can be at most three linearly independent vectors in R3.

In this case, all triples of vec-
tors are linearly independent ex-
cept columns 3, 4, and 6.

b. Yes. For example, the first three columns are linearly independent,
since the matrix composed of just those columns row reduces to the identity.

c. The 3rd, 4th, and 6th columns are linearly dependent.

d. You cannot choose freely the values of x1, x2, x5. Since the rank
of the matrix is 3, three variables must correspond to pivotal (linearly
independent) columns. For the variables x1, x2, x5 to be freely chosen, i.e.,
nonpivotal, x3, x4, x6 would have to correspond to linearly independent
columns.


