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The second statement is false; since neither u⃗ nor w⃗ is a multiple of the
other, we must have |u⃗ · w⃗| < |u⃗||w⃗|.

Computations: |u⃗ · v⃗| = 28; |u⃗||v⃗| =
√

14
√

56 = 28.
|u⃗ · w⃗| = 20; |u⃗||w⃗| =

√
14
√

40 = 4
√

35 ≈ 23.6
c. By proposition 1.4.14, w⃗ lies clockwise from v⃗, since det[v⃗w⃗] =

v1w2 − v2w1 is negative.
d. There is no limit to how long w⃗ can be. For example, you can take

w1 to be anything, set w2 = 0, and solve w3 =
42− w1

3
. The shortest it

can be is 3
√

14: by Schwarz’s inequality,

42 = v⃗ · w⃗ ≤ |v⃗||w⃗| =
√

14|w⃗|, so |w⃗| ≥ 42√
14

= 3
√

14.

1.4.11 a. True by theorem 1.4.5, because w⃗ = −2v⃗.
b. False; u⃗ · (v⃗× w⃗) is a number; |u⃗|(v⃗× w⃗) is a number times a vector,

i.e., a vector.
Solution 1.4.11, part c: Our

answer depended on the vectors
chosen. In general,

det[⃗a, b⃗, c⃗] = − det[⃗a, c⃗, b⃗];

the result here is true only because
both sides are 0, since v⃗, w⃗ are
linearly dependent.

c. True: since w⃗ = −2v⃗, we have det[u⃗, v⃗, w⃗] = 0 and det[u⃗, w⃗, v⃗] = 0.
d. False, since u⃗ is not necessarily (in fact almost surely not) a multiple

of w⃗; the correct statement is |u⃗ · w⃗| ≤ |u⃗||w⃗|.
e. True. f. True.

1.4.12 a. Compute

|v⃗| = |v⃗ + w⃗ − w⃗| ≤ |v⃗ + w⃗| + |− w⃗| = |v⃗ + w⃗| + |w⃗|,

then subtract |w⃗| from both sides.
b. True: | det[⃗a, b⃗, c⃗]| = |⃗a·(b⃗×c⃗)| = |⃗a⊤(b⃗×c⃗)| ≤ |⃗a⊤||b⃗×c⃗| = |⃗a||b⃗×c⃗|.

This says that the volume of the parallelepiped spanned by the three vectors
(given by |det[⃗a, b⃗, c⃗]|) is less than or equal to the length of a⃗ times the
area of the parallelogram spanned by b⃗ and c⃗ (that area given by |b⃗× c⃗|).

1.4.13

⎡

⎣
xa
xb
xc

⎤

⎦×

⎡

⎣
a
b
c

⎤

⎦ =

⎡

⎣
xbc− xbc

−(xac− xac)
xab− xab

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ .

1.4.14

a. u⃗× (v⃗× w⃗) = u⃗×

⎡

⎣
0
3
0

⎤

⎦ =

⎡

⎣
−3

0
3

⎤

⎦ ̸= (u⃗× v⃗)× w⃗ =

⎡

⎣
2
1
−4

⎤

⎦× w⃗ =

⎡

⎣
−1
−2
−1

⎤

⎦

b. v⃗ · (v⃗× w⃗) =

⎡

⎣
2
0
1

⎤

⎦ ·

⎡

⎣
0
3
0

⎤

⎦ = 0. The vectors v⃗ and v⃗× w⃗ are orthogonal.

1.4.15

⎡

⎣
a
b
c

⎤

⎦×

⎡

⎣
d
e
f

⎤

⎦ =

⎡

⎣
bf − ce
cd− af
ae− bd

⎤

⎦ = −

⎡

⎣
d
e
f

⎤

⎦×

⎡

⎣
a
b
c

⎤

⎦ = −

⎡

⎣
ec− bf
af − cd
bd− ae

⎤

⎦
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1.4.16 a. The area is
∣∣∣∣det

[
1 5
2 1

]∣∣∣∣ = |1 − 10| = 9. b. area =
∣∣∣∣det

[
1 5
2 −1

]∣∣∣∣ = 11

1.4.17 a. It is the line of equation
[

x
y

]
·
[

2
−1

]
= 2x− y = 0.

b. It is the line of equation
[

x− 2
y − 3

]
·
[

2
−4

]
= 2x − 4 − 4y + 12 = 0,

which you can rewrite as 2x− 4y + 8 = 0.

1.4.18 a. The area A of the parallelogram is

(a1 + b1)(a2 + b2)−A(1)−A(2)−A(3)−A(4)−A(6),

where A(n) is the area of piece n.

A(1) = a2b1, A(2) =
a1a2

2
, A(3) =

b1b2

2
, A(4) =

b1b2

2
, A(5) =

a1a2

2
and A(6) = a2b1.

So A = (a1 + b1)(a2 + b2)−A(1)−A(2)−A(3)−A(4)−A(6) = a1b2−a2b1

which is the required result.
b. When b1 is negative, the area of the rectangle in the figure below is

(a1−b1)(a2 +b2), and the area of the parallelogram is that total area minus
the area of the triangles marked 1,2,3, and 4.

2

1

3

4

a1b1

a2
b2

Since those areas are

A(1) = A(3) =
−b1b2

2
and A(2) = A(4) =

a1a2

2
,

we have

(a1 − b1)(a2 + b2)− a1a2 + b1b2 = a1b2 − a2b1.

1.4.19 a. The length of v⃗n is |v⃗n| =
√

1 + · · · + 1 =
√

n.

Solution 1.4.19, part b: We find
it surprising that the diagonal vec-
tor v⃗n is almost orthogonal to all
the standard basis vectors when n
is large.

b. The angle is arccos
1√
n

, which tends to 0 as n→∞.

1.4.20 This is easy if one remembers that

det A = a1(b2c3 − b3c2) + b1(a3c2 − a2c3) + c1(a2b3 − a3b2)

as well as the formulas for developing detA from the other rows. If we
ignore the 1

det A this tells us that along the diagonal of the product of
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the original matrix and its putative inverse, we find detA, which cancels
with the ignored 1

det A to produce 1s. Off the diagonal, the result is the
determinant of a 3×3 matrix with two identical rows, which is 0. Therefore
the formula is correct.

1.4.21 a. |A| =
√

1 + 1 + 4 =
√

6; |B| =
√

5; |⃗c| =
√

10

b. |AB| =
∣∣∣∣

[
2 0
2 2

]∣∣∣∣ =
√

12 ≤
√

30 = |A||B|

|Ac⃗| =
√

50 ≤ |A||⃗c| =
√

60; |Bc⃗| =
√

13 ≤ |B||⃗c| =
√

50

1.4.22 a. It is an equality when the transpose of each row of the matrix
A is the product by a scalar of the vector b⃗. In that case, the inequality
marked (2) in Equation 1.4.31 is an equality, so the inequality of Equation
1.4.31 becomes an equality.

Solution 1.4.23, part a: This
uses the fact that

12 + 22 + · · ·+ n2 =
n3

3
+

n2

2
+

n
6

.

b. It is an equality when all the columns of B are linearly dependent,
and the transpose of each row of A is the product by a scalar by any (hence
every) column of B. In that case, and in that case only, the inequality in

Equation 1.4.33 is an equality by part (a). For example, if A =
[

2 2 2
3 3 3

]

and B =

⎡

⎣
1 1 4
1 1 4
1 1 4

⎤

⎦, then |AB| = |A| |B|.

Solution b uses the notion of linear dependence, not introduced until
chapter 2. Here is an alternative:

It is an equality if either A or B is the zero matrix; in that case, the
other matrix can be anything. Otherwise, it is an equality if and only if all
the rows of A and all the columns of B are multiples of some one vector:
The first inequality in equation 1.4.33 is an equality if for each j all rows of
A are multiples of b⃗j . Therefore, all columns of B and all rows of A must
be multiples of the same vector.

1.4.23 a. The length is |w⃗n| =
√

1 + 4 + · · · + n2 =

√
n3

3
+

n2

2
+

n

6
.

b. The angle αn,k is arccos
k√

n3

3 + n2

2 + n
6

.

c. In all three cases, the limit is π/2. Clearly limn→∞ αn,k = π/2, since
the cosine tends to 0.

The limit of αn,n is limn→∞ arccos 0 = π/2.
The limit of αn,[n/2] is also π/2, since it is the arccos of

[n/2]√
n3

3 + n2

2 + n
6

, which tends to 0 as n→∞.

1.4.24 a. To show that v⃗⊥ is a subspace of Rn we must show that if
w⃗1, w⃗2 ∈ v⃗⊥, then (w⃗1 + w⃗2) ∈ v⃗⊥ and aw⃗1 ∈ v⃗⊥ for any a ∈ R: i.e.,
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that (w⃗1 + w⃗2) · v⃗ = 0 and aw⃗1 · v⃗ = 0. The dot product is distributive,
so (w⃗1 + w⃗2) · v⃗ = w⃗1 · v⃗ + w⃗2 · v⃗ = 0. Multiplication is distributive, so
v⃗ · aw⃗1 = aw1v1 + · · · + awnvn = a(w1v1 + · · · + wnvn) = av⃗ · w⃗1 = 0.

b.

(a⃗− a⃗ · v⃗
|v⃗|2 v⃗) · v⃗ = a⃗ · v⃗− a⃗ · v⃗

|v⃗|2 (v⃗ · v⃗) = a⃗ · v⃗− a⃗ · v⃗
|v⃗|2 |v⃗|2 = a⃗ · v⃗− a⃗ · v⃗ = 0.

c. Suppose that a⃗ + t(a⃗)v⃗ ∈ v⃗⊥. Working this out, we get

0 = (a⃗ + t(a⃗)v⃗) · v⃗ = a⃗ · v⃗ + t(a⃗)(v⃗ · v⃗),

which gives

t(a⃗) = − a⃗ · v⃗
v⃗ · v⃗ .

This is well-defined since v⃗ ̸= 0, and with this value of t(a⃗) we do have
a⃗ + t(a⃗)v⃗ ∈ v⃗⊥ by part (b).

1.4.25
(√

x2
1 + x2

2

√
y2
1 + y2

2

)2
−
(
x1y1 + x2y2

)2
= (x2y1)2 + (x1y2)2 − 2x1x2y1y2

= (x1y2 − x2y1)2 ≥ 0,

so (x1y1 + x2y2)2 ≤
(√

x2
1 + x2

2

√
y2
1 + y2

2

)2

, so

|x1y1 + x2y2| ≤
√

x2
1 + x2

2

√
y2
1 + y2

2 .

1.4.26 a. The angle is given by

α
(

x
y

)
= arccos

[
x
y

]
· A
[

x
y

]

∣∣∣∣

[
x
y

]∣∣∣∣

∣∣∣∣A
[

x
y

]∣∣∣∣

=
x2 + xy + 4y2

√
(x2 + y2)((x− 2y)2 + (3x + 4y)2)

.

b. This is never 0 when
[

x
y

]
̸=
[

0
0

]
. Indeed, the numerator can be

written

x2 + xy + y2/4 + 15y2/4 = (x + y/2)2 + 15y2/4,

which is the sum of two squares, hence positive unless both are 0. This
requires that y = 0, hence x = −y/2 = 0.

1.4.27 a. To show that the transformation is linear, we need to show that

Ta⃗(v⃗ + w⃗) = Ta⃗(v⃗) + Ta⃗(w⃗) and αTa⃗(v⃗) = Ta⃗(αv⃗).
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For the first,

Ta⃗(v⃗+w⃗) = v⃗+w⃗−2
(
a⃗·(v⃗+w⃗)

)
a⃗ = v⃗+w⃗−2(a⃗·v⃗+a⃗·w⃗)a⃗ = Ta⃗(v⃗)+Ta⃗(w⃗).

For the second,

αTa⃗(v⃗) = αv⃗ − 2α(a⃗ · v⃗)a⃗ = αv⃗ − 2(a⃗ · αv⃗)a⃗ = Ta⃗(αv⃗).

b. We have Ta⃗(a⃗) = −a⃗, since a⃗ · a⃗ = a2 + b2 + c2 = 1:

Ta⃗(a⃗) = a⃗− 2(a⃗ · a⃗)a⃗ = a⃗− 2a⃗ = −a⃗.

The transformation Ta⃗ is the 3-
dimensional version of the trans-
formation shown in figure 1.3.4.

If v⃗ is orthogonal to a⃗, then Ta⃗(v⃗) = v⃗, since in that case a⃗ ·v⃗ = 0. Thus Ta⃗

is reflection in the plane that goes through the origin and is perpendicular
to a⃗.

c. The matrix of Ta⃗ is

M = [Ta⃗(⃗e1) , Ta⃗(⃗e2) , Ta⃗(⃗e3)] =

⎡

⎣
1− 2a2 −2ab −2ac
−2ab 1− 2b2 −2bc
−2ac −2bc 1− 2c2

⎤

⎦

Squaring the matrix gives the 3× 3 identity matrix: if you reflect a vector,
then reflect it again, you are back to where you started.

1.4.28

1.5.1 a. The set {x ∈ R | 0 < x ≤ 1 } is neither open nor closed: the point
1 is in the set, but 1 + ϵ is not for every ϵ, showing it isn’t open, and 0 is
not but 0 + ϵ is for every ϵ > 0, showing that the complement is also not
open, so the set is not closed.

b. open c. neither d. closed e. closed f. neither g.
both.

1.5.2 a. The (x, y)-plane in R3 is not open; you cannot move in the z
direction and stay in the (x, y)-plane. It is closed because its complement
is open: any point in {R3 − (x, y)-plane} can be surrounded by an open
3-dimensional ball in {R3 − (x, y)-plane}.

b. The set R ⊂ C is not open: the ball of radius ϵ > 0 around a real
number x always contains the non-real number x+iϵ/2. It is closed because
its complement is open; if z = x + iy ∈ {C−R}, i.e., if y ̸= 0, then the ball
of radius |y|/2 around z is contained in {C− R}.

c. The line x = 5 in the (x, y)-plane is closed; any point in its complement
can be surrounded by an open ball in the complement.

d. The set (0, 1) ⊂ C is not open since (for example) the point 0.5 ∈ R
cannot be surrounded by an open ball in R. It is not closed because its
complement is not open. For example, the point

(
1
0
)
∈ C, cannot be

surrounded by an open ball in {C− (0, 1) ⊂ C}.
e. Rn ⊂ Rn is open. It is also closed, because its complement, the empty

set, is trivially open.
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g. The unit 2-sphere S ⊂ R3 is not open: if x ∈ S2 and ϵ > 0, then the
point (1+ϵ/2)x is in Bϵ(x) but not on S2. It is closed, since its complement
is open: if y /∈ S2, i.e., if |y| ̸= 1, then the open ball B||y|−1|/2(y) does not
intersect S2.

1.5.3 a. Suppose Ai, i ∈ I is some collection (probably infinite) of open
sets. If x ∈

⋃
i∈I Ai, then x ∈ Aj for some j, and since Aj is open, there

exists ϵ > 0 such that Bϵ(x) ⊂ Aj . But then Bϵ(x) ⊂
⋃

i∈I Ai.
Solution 1.5.3, part b: There

is a smallest ϵi, because there are
finitely many of them, and it is
positive. If there were infinitely
many, then there would be a great-
est lower bound, but it could be 0.

Part c: In fact, every closed set
is a countable intersection of open
sets.

b. If A1, . . . , Aj are open and x ∈ ∩k
i=1Ai, then there exist ϵ1, . . . , ϵk > 0

such that Bϵi(x) ⊂ Ai, for i = 1, . . . , k. Set ϵ to be the smallest of ϵ1, . . . , ϵk.
Then Bϵ(x) ⊂ Bϵi(x) ⊂ Ai.

c. The infinite intersection of open sets (−1/n, 1/n), for n = 1, 2, . . . , is
not open; as n→∞, −1/∞→ 0 and 1/∞→ 0; the set {0} is not open.

1.5.4

1.5.5 a. This set is open. Indeed, if you choose
(

x
y

)
in your set, then

1 <
√

x2 + y2 <
√

2. Set

r = min
{√

x2 + y2 − 1,
√

2−
√

x2 + y2
}

> 0.

Then the ball of radius r around
(

x
y

)
is contained in the set, since if

(
u
v

)

is in that ball, then, by the triangle inequality,The first equation uses the fa-
miliar form of the triangle inequal-
ity: if a = b + c, then

|a| ≤ |b| + |c|.

The second uses the variant

|a| ≥
∣∣∣|b|− |c|

∣∣∣.

∣∣∣∣

[
u
v

]∣∣∣∣ ≤
∣∣∣∣

[
u− x
v − y

]∣∣∣∣+
∣∣∣∣

[
x
y

]∣∣∣∣ < r +
∣∣∣∣

[
x
y

]∣∣∣∣ ≤
√

2

∣∣∣∣

[
u
v

]∣∣∣∣ ≥
∣∣∣∣

[
x
y

]∣∣∣∣−
∣∣∣∣

[
u− x
v − y

]∣∣∣∣ >
∣∣∣∣

[
x
y

]∣∣∣∣− r ≥ 1.

b. The locus xy ̸= 0 is also open. It is the complement of the two axes,
so that if

(
x
y

)
is in the set, then r = min{|x|, |y|} > 0, and the ball B of

radius r around
(

x
y

)
is contained in the set. Indeed, if

(
u
v

)
is B, then

|u| = |x + u− x| > |x|− |u− x| > |x|− r ≥ 0, so u is not 0, and neither is
v, by the same argument.

c. This time our set is the x-axis, and it is closed. We will use the
criterion that a set is closed if the limit of a convergent sequence of elements
of the set is in the set (proposition 1.5.17). If

(
xn
yn

)
is a sequence in the

set, and converges to
(

x0
y0

)
, then all yn = 0, so y0 = limn→∞ yn = 0, and

the limit is also in the set.

Many students have found ex-
ercise 1.5.5 difficult, even though
they also thought it was obvi-
ous, but didn’t know how to say
it. If this applies to you, you
should check carefully where we
used the triangle inequality, and
how. Almost everything concern-
ing inequalities requires the trian-
gle inequality.

d. The rational numbers are neither open nor closed. Any rational num-
ber x is the limit of the numbers x +

√
2/n, which are all irrational, so

the rationals aren’t closed. Any irrational number is the limit of the finite
decimals used to write it, which are all rational, so the irrationals aren’t
closed either.


