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1.5.6

1.5.7 a. The natural domain is R2 minus the union of the two axes; it is
open.

b. The natural domain is that part of R2 where x2 > y (i.e., the area
“inside” the parabola of equation y = x2). It is open since its “fence” x2

belongs to its neighbor.
c. The natural domain of ln lnx is {x|x > 1}, since we must have

lnx > 0. This domain is open.
d. The natural domain of arcsin is [−1, 1]. Thus the natural domain of

arcsin 3
x2+y2 is R2 minus the open disc x2 + y2 < 3. Since this domain is

the complement of an open disc it is closed and not open.
e. The natural domain is all of R2, which is open.
f. The natural domain is R3 minus the union of the three coordinate

planes of equation x = 0, y = 0, z = 0; it is open.

1.5.8 a. The matrix A is

A =

⎡

⎣
0 −ϵ −ϵ
0 0 −ϵ
0 0 0

⎤

⎦ , since

⎡

⎣
1 ϵ ϵ
0 1 ϵ
0 0 1

⎤

⎦

︸ ︷︷ ︸
B

=

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
I

−

⎡

⎣
0 −ϵ −ϵ
0 0 −ϵ
0 0 0

⎤

⎦

︸ ︷︷ ︸
A

.

To compute the inverse of B, i.e., B−1, we compute the series based on A:

B−1 = (I −A)−1 = I + A + A2 + A3 . . . .

We have

A2 =

⎡

⎣
0 0 ϵ2

0 0 0
0 0 0

⎤

⎦ and A3 =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ ,

so

B−1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦+

⎡

⎣
0 −ϵ −ϵ
0 0 −ϵ
0 0 0

⎤

⎦+

⎡

⎣
0 0 ϵ2

0 0 0
0 0 0

⎤

⎦ =

⎡

⎣
1 −ϵ −ϵ+ ϵ2

0 1 −ϵ
0 0 1

⎤

⎦ .

In this case ϵ doesn’t need to be small for the series to converge.
b.

[
1 −ϵ

+ϵ 1

]

︸ ︷︷ ︸
C

= I −
[

0 ϵ
−ϵ 0

]

︸ ︷︷ ︸
A

.

To compute C−1 = (I−A)−1 = I +A+A2 +A3 . . . , first compute A2, A3,
and A4: [

0 ϵ
−ϵ 0

] [
0 ϵ
−ϵ 0

] [
0 ϵ
−ϵ 0

]

[
0 ϵ
−ϵ 0

] [
−(ϵ2) 0

0 −(ϵ2)

]

︸ ︷︷ ︸
A2

[
0 −(ϵ3)
ϵ3 0

]

︸ ︷︷ ︸
A3

[
ϵ4 0
0 ϵ4

]

︸ ︷︷ ︸
A4

.
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In the series I + A + A2 + A3, each entry of A itself converges to a limit:
S = a + ar + ar2 + · · · = a

a−r . For a1,1, we have a = 1, r = −ϵ2, so a1,1

converges to 1
1+ϵ2 . For a1,2, we have a = ϵ, r = −ϵ2, so a1,2 converges to

ϵ
1+ϵ2 , and so on. In this way we getNote that according to proposi-

tion 1.5.37, we need |A| < 1 for our
series I + A + A2 . . . to be conver-
gent. Since |A| = ϵ

√
2, this would

mean we need to have |ϵ| < 1/
√

2.
But in fact all we need in this case
is ϵ < 1.

C−1 =
[ 1

1+ϵ2
ϵ

1+ϵ2
−ϵ

1+ϵ2
1

1+ϵ2

]
.

1.5.9 For any n > 0 we have

∣∣∣∣∣

n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi| by the triangle inequality

(theorem 1.4.9). Because
∑∞

i=1 xi converges,
∑n

i=1 xi converges as n→∞.
So :

∣∣∣∣∣

∞∑

i=1

xi

∣∣∣∣∣ ≤
∞∑

i=1

|xi|.

1.5.10 a. More generally, if f(x) = a0 + a1x + . . . is any power series
which converges for |x| < R, the series of square n× n matrices

f(A) = a0 + a1A + a2A
2 + . . .

converges for |A| < R. Indeed, for |x| < R the power series
∞∑

i=0

|ai| |x|i

converges absolutely, so the series of matrices also converges absolutely by
propositions 1.5.34 and 1.4.11:

∞∑

k=1

|akAk| ≤
∞∑

k=1

|ak||A|k.

In particular, the exponential series defining eA converges for all A. Finding
an actual bound is a little irritating because the length of the n×n identity
matrix is not 1; it is

√
n. We deal with this by adding and subtracting 1:

|eA| =
∣∣∣∣I + A +

A2

2!
+ · · ·

∣∣∣∣ ≤ |I| + |A| +
∣∣∣∣
A2

2!

∣∣∣∣+ · · · ≤
√

n + |A| + |A|2

2!
+ · · ·

=
√

n− 1 +
(

1 + |A| + |A|2

2!
+ · · ·

)
=
√

n− 1 + e|A|.

When we start using norms of matrices rather than lengths (section 2.9)
this nastiness of the length of the identity matrix disappears.

b.

(1) e

[
a 0
0 b

]

=
[

1 0
0 1

]
+
[

a 0
0 b

]
+ 1

2!

[
a2 0
0 b2

]
+ · · · =

[
ea 0
0 eb

]
.
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(2) Note the remarkable fact that
[

0 a
0 0

]2
=
[

0 0
0 0

]
, so

e

[
0 a
0 0

]

=
[

1 0
0 1

]
+
[

0 a
0 0

]
=
[

1 a
0 1

]
.

(3) Let us compute a few powers:
[

0 a
−a 0

] [
0 a
−a 0

] [
0 a
−a 0

] [
0 a
−a 0

]
. . .

[
1 0
0 1

] [
0 a
−a 0

] [
−a2 0
0 −a2

] [
0 −a3

a3 0

] [
a4 0
0 a4

]
. . .

I A A2 A3 A4 . . .

We see that only the even terms contribute to the diagonal, and only the
odd terms contribute to the antidiagonal. We can rewrite the series as

e

[
0 a
−a 0

]

=
[

1− a2/2 + a4/4! + . . . a− a3/3! + a5/5! + . . .
−a + a3/3!− a5/5! + . . . 1− a2/2 + a4/4! + . . .

]
=
[

cos a sin a
− sin a cos a

]
,

where we have recognized what we hope are old friends, the power series
for sinx and cos x, in the diagonal and antidiagonal terms respectively.

c. (1) If we set A =
[

0 1
0 0

]
and B =

[
0 0
−1 0

]
, we have

eA+B =
[

cos 1 sin 1
− sin 1 cos 1

]
but eAeB =

[
1 1
0 1

] [
1 0
−1 0

]
=
[

1 1
−1 0

]
.

The matrices A and B above do not commute:
[

0 1
0 0

] [
0 0
−1 0

]
=
[
−1 0

0 0

]
and

[
0 0
−1 0

] [
0 1
0 0

]
=
[

0 0
0 −1

]
.

When AB = BA, the formula eA+B = eAeB is true. Indeed,

eA+B = I + (A + B) +
1
2!

(A + B)2 +
1
3!

(A + B)3 + · · ·

= I + (A + B) +
1
2!

(A2 + AB + BA + B2)

+
1
3!

(A3 + A2B + ABA + BA2 + AB2 + BAB + B2A + B3) + · · ·

whereas

eAeB =
(

I + A +
1
2!

A2 +
1
3!

A3 + . . .

)(
I + B +

1
2!

B2 +
1
3!

B3 + . . .

)

= I + (A + B) +
1
2!

(A2 + 2AB + B2) +
1
3!

(A3 + 3A2B + 3AB2 + B3) + . . .

We see that the series are equal when AB = BA, and have no reason to
be equal otherwise. This proof is just a little shaky; the terms of the series
don’t quite come in the same order, and we need to invoke the fact that for
absolutely convergent series, we can rearrange the terms in any order, and
the series still converges to the same sum.
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(2) It follows from the above that e2A =
(
eA
)2: of course, A commutes

with itself.

1.5.11 a. First let us see that
(
(∀ϵ > 0)(∃N)(n > N) =⇒ |an − a| < ϕ(ϵ)

)
=⇒

(
an converges to a

)
.

Choose η > 0. Since limt→0 ϕ(t) = 0, there exists δ > 0 such that when
0 < t ≤ δ we have ϕ(t) < η. Our hypothesis guarantees that there exists
N such that when n > N , then |an − a| ≤ ϕ(δ) = η.

Now for the converse:
(
an converges to a

)
=⇒

(
(∀ϵ > 0)(∃N)(n > N) =⇒ |an − a| < ϕ(ϵ)

)
.

For any ϵ > 0, we also have ϕ(ϵ) > 0, so there exists N such that

n > N =⇒ |an − a| < ϕ(ϵ).

b. The analogous statement for limits of functions is:
Let ϕ : [0,∞) → [0,∞) be a function such that limt→0 ϕ(t) = 0. Let

U ⊂ Rn, f : U → Rm, and x0 ∈ U . Then limx→x0 f(x) = a if and only if
for every ϵ > 0 there exists δ > 0 such that when x ∈ U and |x− x0| < δ,
we have |f(x)− a| < ϕ(ϵ).

1.5.12 Let us first show the interesting case: (2) =⇒ (1).
Choose ϵ > 0, and then choose γ > 0 such that when |t| ≤ γ we have

u(t) < ϵ; such a γ exists because limt→0 u(t) = 0. Our hypothesis is that
for all ϵ > 0 there exists δ > 0 such that when |x − x0| < δ, and x ∈ U ,
then |f(x)− a| < u(ϵ). Similarly, for all γ > 0 there exists δ > 0 such that
when |x− x0| < δ, and x ∈ U , then |f(x)− a| < u(γ). Since u(γ) < ϵ, this
implies |f(x)− a| < u(ϵ).

For the other direction, just take u(ϵ = ϵ.

1.5.13 If every convergent sequence in C converges to a point in C then
∀ points a such that ∀n ∃ a point bn ∈ C such that |bn − a| ≤ 1

n , the
sequence bn converges to a so a ∈ C. It then follows that R−C is open (a
is not in R− C) so C is closed.

1.5.14 a. The functions x and y both are continuous on R2, so they
have limits at all points. Hence so does x + y (the sum of two continuous
functions is continuous), and x2 (the product of two continuous functions
is continuous). The quotient of two continuous functions is continuous

wherever the denominator is not 0, and x + y = 3 at
[

1
2

]
. So the limit

exists, and is 1/3.

b. This is much nastier: the denominator does vanish at
(

0
0
)
. If we let

x = y = t ̸= 0, the function becomes

t
√

|t|
2t2

=
1

2
√
|t|

.
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Evidently this can be made arbitrarily large by taking |t| sufficiently small.
Strictly speaking, this shows that the limit does not exist, but sometimes
one allows infinite limits. Is the limit ∞? No, because f

(
t
0
)

= 0, so there
also are points arbitrarily close to the origin where the function is zero. So
there is no value, even ∞, which the function is close to when |

(
x
y

)
| is

small (i.e., the distance from
(

x
y

)
to the point

(
0
0
)
,
∣∣∣∣

[
x− 0
y − 0

]∣∣∣∣, is small).

c. This time, if we approach the origin along the diagonal, we get

f
(

t
t

)
=

|t|√
2|t|

=
1√
2
,

whereas if we approach the origin along the axes, the function is zero, and
the limit is zero. Thus the limit does not exist.

d. This is no problem: x2 is continuous everywhere, y3 is continuous ev-
erywhere, −3 is continuous everywhere, the sum is continuous everywhere,
and the limit exists, and is 6.

Solution 1.5.15: Here, x plays
the role of the alligators in sec-
tion 0.2, and x ≥ 0 satisfying
| − 2 − x| < δ plays the role of
eleven-legged alligators; the con-
clusion |

√
x − 5| < ϵ (i.e., that 5

is the limit) is the conclusion “are
orange with blue spots” and the
conclusion |

√
x−3| < ϵ (i.e., that 3

is the limit) is the conclusion “are
black with white stripes.”

1.5.15 Both statements are true. To show that the first is true, we say:
for every ϵ > 0, there exists δ > 0 such that for all x satisfying x ≥ 0 and
|− 2− x| < δ, then |

√
x− 5| < ϵ. For any ϵ > 0, choose δ = 1. Then there

is no x ≥ 0 satisfying | − 2 − x| < δ. So for those nonexistent x satisfying
| − 2 − x| < 1, it is true that |

√
x − 5| < ϵ. By the same argument the

second statement is true.

1.5.16 a. For any ϵ > 0, there exists δ > 0 such that when 0 <
√

x2 + y2 <
δ, we have

∣∣∣f
(

x
y

)
− a
∣∣∣ < ϵ.

b. The limit of f does not exist. Indeed, if we set y = 0 the limit becomes

lim
x→0

sinx

|x| .

This approaches +1 as x tends to 0 through positive values, and tends to
−1 as x tends to 0 through negative values.

The limit of g does exist, and is 0. By l’Hôpital’s rule (or because you
remember it), we have

lim
x↓0

x lnx = lim
x↓0

lnx

1/x
= lim

x↓0

1/x

−1/x2
= lim

x↓0
−x = 0.

(We write x ↓ 0 rather than x → 0 to indicate that x is decreasing to 0;
ln(x) is not defined for negative values of x.) When (x2 + y4) < 1 so that
the logarithm is negative, we have

2|x| ln |x| + 4|y| ln |y| = (|x| + |y|) ln(x2 + y4) < 0.

Given ϵ > 0, find δ > 0 so that when 0 < |x| < δ, we have 4|x| ln |x| > −2ϵ
3 .

When
√

x2 + y2 < δ, then in particular |x| < δ and |y| < δ, so that

2|x| ln |x|+4|y| ln |y| > − ϵ
3
−2ϵ

3
= −ϵ, so that

∣∣(|x| + |y|) ln(x2 + y4)
∣∣ < ϵ.
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1.5.17 Set a = limm→∞ am, b = limm→∞ bm and c = limm→∞ cm.

1. Choose ϵ > 0 and find M1 and M2 such that if m ≥M1 then we have
|am − a| ≤ ϵ/2, and if m ≥M2 then |bm − b| ≤ ϵ/2. If

m ≥M = max(M1, M2),

we have

|am + bm − a− b| ≤ |am − a| + |bm − b| ≤ ϵ

2
+
ϵ

2
= ϵ.

So the sequence (am + bm) converges to a + b.

2. Choose ϵ > 0. Find M1 such that if

m ≥M1 then |am − a| ≤ 1
2

inf
(
ϵ

|c| , ϵ
)

.

The inf is there to guard against the possibility that |c| = 0. In particular,
if m ≥M1, then |am| ≤ |a| + ϵ. Next find M2 such that if

m ≥M2 then |cm − c| ≤ ϵ

2(|a| + ϵ)
.

If m ≥M = max(M1, M2), then

|cmam − ca| = |c(am − a) + (cm − c)am|

≤ |c(am − a)| + |(cm − c)am| ≤ ϵ

2
+
ϵ

2
= ϵ,

so the sequence (cmam) converges and the limit is ca.

3. We can either repeat the argument above, or use parts 1 and 2 as
follows:

lim
m→∞

am · bm = lim
m→∞

n∑

i=1

am,ibm,i =
n∑

i=1

lim
m→∞

(am,ibm,i)

=
n∑

i=1

(
lim

m→∞
am,i

)(
lim

m→∞
bm,i

)
=

n∑

i=1

aibi = a · b.

4. Find C such that |am| ≤ C for all m; saying that am is bounded
means exactly that such a C exists. Choose ϵ > 0, and find M such that
when m > M , then |cm| < ϵ/C (this is possible since the cm converge to
0). Then when m > M we have

|cmam| = |cm||am| ≤ ϵ

C
C = ϵ.

1.5.18 If cm is a subsequence of an then ∀n ∃mn such that if m ≥ mn

then ∃nm ≥ n such that cm = anm , so if the sequence ak converges to a
then so does any subsequence (instead of m ≥ n we have m ≥ mn).

1.5.19 a. Suppose I −A is invertible, and write

I −A + C = I −A + C(I −A)−1(I −A) =
(
I + C(I −A)−1

)
(I −A),
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so

(I −A + C)−1 = (I −A)−1
(
I + C(I −A)−1

)−1

= (I −A)−1

(
I − (C(I −A)−1) + (C(I −A)−1)2 − (C(I −A)−1)3 + · · ·︸ ︷︷ ︸

geometric series

)

so long as the series is convergent. By proposition 1.5.37, this will happen
if

|C(I −A)−1| < 1, in particular if |C| <
1

|(I −A)−1| .

Thus every point of U is the center of a ball contained in U .
For the second part of the question, the matrices

Cn =
[

1− 1/n 0
0 1− 1/n

]
, n = 1, 2, . . .

converge to I, and Cn is in U since I − Cn =
[

1/n 0
0 1/n

]
is invertible.

b. Simply factor: (A + I)(A− I) = A2 + A−A− I = A2 − I, so

(A2 − I)(A− I)−1 = (A + I)(A− I)(A− I)−1 = A + I,

which converges to 2I as A→ I.

c. Showing that V is open is very much like showing that U is open
(part a). Suppose B −A is invertible, and write

B −A + C = (I + C(B −A)−1)(B −A),

so

(B −A + C)−1 = (B −A)−1
(
I + C(B −A)−1

)−1

= (B −A)−1
(
I − (C(B −A)−1) + (C(B −A)−1)2 − (C(B −A)−1)3 + · · ·

)

so long as the series is convergent. This will happen if

|C(B −A)−1| < 1, in particular, if |C| <
1

|(B −A)−1| .

Thus every point of V is the center of a ball contained in V . Again, the
matrices

[
1 + 1/n 0

0 −1 + 1/n

]
, n = 1, 2, . . .

do the trick.

d. This time, the limit does not exist. Note that you cannot factor
A2 −B2 = (A + B)(A−B) if A and B do not commute.

First set

An =
[

1/n + 1 1/n
0 −1 + 1/n

]
.



40 Solutions for Chapter 1

Then

A2
n −B2 =

[
2/n + 1/n2 2/n2

0 −2/n + 1/n2

]
and (A−B)−1 =

[
n −n
0 n

]
.

Thus we find
Part d: You may wonder how

we came by the matrices An; we
observed that

B

[
0 1
0 0

]
=

[
0 1
0 0

]

[
0 1
0 0

]
B =

[
0 −1
0 0

]
,

so these matrices do not commute.

(A2
n −B2)(An −B)−1 =

[
2 + 1/n −2 + 1/n

0 −2 + 1/n

]
→
[

2 −2
0 −2

]

as n→∞.
Do the same computation with A′n =

[
1/n + 1 0

0 −1 + 1/n

]
. This time

we find

(A′2n −B2)(A′n −B)−1 =
[

2 + 1/n 0
0 −2 + 1/n

]
→
[

2 0
0 −2

]
= 2B

as n→∞.
Since both sequence An and A′n converge to B, this shows that there is

no limit.

1.5.20 a. The powers of A are

A2 =
[

2a2 2a2

2a2 2a2

]
, A3 =

[
4a3 4a3

4a3 4a3

]
, . . . , An =

[
2n−1an 2n−1an

2n−1an 2n−1an

]
.

For this sequence of matrices to converge to the zero matrix, each entry
must converge to 0. This will happen if |a| < 1/2 (see Example 0.5.6). The
sequence will also converge if a = 1/2; in that case the sequence is constant.

b. Exactly as above,
⎡

⎣
a a a
a a a
a a a

⎤

⎦
n

=

⎡

⎣
3n−1an 3n−1an 3n−1an

3n−1an 3n−1an 3n−1an

3n−1an 3n−1an 3n−1an

⎤

⎦ ,

so the sequence converges to the 0 matrix if |a| < 1/3; it converges when
a = 1/3 because it is a constant sequence. For an m×m matrix filled with
a’s, the same computation shows that An will converge to 0 if |a| < 1/m.
It will converge when a = 1/m because it is a constant sequence.

1.5.21 a. This is a quotient of continuous functions where the denominator
does not vanish at

(
0
0
)
, so it is continuous at the origin.

b. Again, there is no problem: this is the square root of a continuous
function, at a point where the function is 1, so it is continuous at the origin.

c. If we approach the origin along the x-axis, f = 1, and if we approach
the origin along the y-axis, f = |y| 23 goes to 0, so f is not continuous at
the origin. There is no way of choosing a value of f

(
0
0
)

that will make f

continuous at the origin.
d. When 0 < x2 + 2y2 < 1,

0 > (x2 + y2) ln(x2 + 2y2) ≥ (x2 + y2) ln
(
2(x2 + y2)

)

= (x2 + y2) ln(x2 + y2) + (x2 + y2) ln 2.
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The term (x2 + y2) ln(x2 + y2) tends to 0 using equation (1) in the margin.
The second term, (x2 + y2) ln 2, obviously tends to 0. So if we choose
f
(

0
0
)

= 0, then f is continuous.
Part d uses the following state-

ment from one-variable calculus:

lim
u→0

u ln |u| = 0. (1)

This can be proved by applying

l’Hôpital’s rule to
ln |u|
1/u

.

e. The function is not continuous near the origin. Since ln 0 is undefined,
the diagonal x + y = 0 is not part of the function’s domain of definition.
However, the function is defined at points arbitrarily close to that line, e.g.,
the point

(
x

−x + e−1/x3

)
. At this point we have

(
x2 +

(
−x + e−1/x3

)2
)

ln
∣∣∣x− x + e−1/x3

∣∣∣ ≥ x2

∣∣∣∣
1
x3

∣∣∣∣ =
1
|x| ,

which tends to infinity as x tends to 0. But if we approach the origin along
the x-axis (for instance), the function is x2 ln |x|, which tends to 0 as x
tends to 0.

1.5.22 a. Since |A| = 3, δ = ϵ/4 works, by the proof of Theorem 1.5.32.

b. The largest δ can be is ϵ/
√

5. Indeed, let
[

x
y

]
= r

[
cos θ
sin θ

]
.

Then∣∣∣∣A
[

x
y

]∣∣∣∣ = r
√

4 cos2 θ + 4 sin2 θ + sin2 θ = r
√

4 + sin2 θ ≤
√

5r,

with equality realized when θ = π/2, i.e., when x = 0. If follows that if
∣∣∣∣

[
x1

y1

]
−
[

x2

y2

]∣∣∣∣ ≤ δ =
ϵ√
5
,

then ∣∣∣∣A
[

x1

y1

]
−A

[
x2

y2

]∣∣∣∣ =
∣∣∣∣A
([

x1

y1

]
−
[

x2

y2

])∣∣∣∣ ≤
√

5
ϵ√
5

= ϵ.

Thus δ = ϵ√
5

works, and since the inequality above is an equality when
x1 = x2, it is the largest δ that works.

1.5.23 a. To say that limB→A(A−B)−1(A2−B2) exists means that there
is a matrix C such that for all ϵ > 0, there exists δ > 0, such that when
|B −A| < δ and B −A is invertible, then

|(B −A)−1(B2 −A2)− C| < ϵ.

b. We will show that the limit exists, and is
[

2 0
0 2

]
= 2I. Write

B = I + H, with H invertible, and choose ϵ > 0. We need to show that
there exists δ > 0 such that if |H| < δ, then

∣∣(I + H − I)−1(I + H)2 − I2 − 2I
∣∣ < ϵ. (2)

Indeed,
∣∣(I + H − I)−1(I + H)2 − I2 − 2I

∣∣ =
∣∣H−1(I2 + IH + HI + H2 − I2)− 2I

∣∣

=
∣∣H−1(2H + H2)− 2I

∣∣ = |H|.


