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So if you set 6 =€, and |H| < §, then equation (2) is satisfied.
c. We will show that the limit does not exist. In this case, we find
(A+H—-A) Y A+H?-A>=H Y1+ AH+ HA+ H> - I?)
=H YAH+ HA+ H*)= A+ H 'AH + H*.
If the limit exists, it must be 2A4: choose H = eI so that H~' = ¢ 'I; then
A+H 'AH + H?> =2A + €I

is close to 2A.

But if you choose H = ¢ {1

0

B I [ FE B B

So with this H we have
A+ H 'AH+H?>=A— A+eH

_OJ , you will find that

which is close to the zero matrix.
1.5.24

1.6.1 Let B be a set contained in a ball of radius R centered at a point a.
Then it is also contained in a ball of radius R + |a| centered at the origin;
thus it is bounded.

1.6.2 First, remember that compact is equivalent to closed and bounded
so if A is not compact then A is unbounded and/or not closed. If A is
unbounded then the hint is sufficient. If A is not closed then A has a limit
point a not in A: i.e., there exists a sequence in A that converges in R" to
a point a ¢ A. Use this a as the a in the hint.

1.6.3 The polynomial p(z) = 1 + 22y? has no roots because 1 plus some-
thing positive cannot be 0. This does not contradict the fundamental the-
orem of algebra because although p is a polynomial in the real variables x
and vy, it is not a polynomial in the complex variable z: it is a polynomial
in z and z. It is possible to write p(z) = 1 + 2232 in terms of z and z. You
can use

z+z and Y= z—.z7
21

xr =

and find
2 — 20zt + 21

=1
p(z) =1+ 16

but you simply cannot get rid of the Z.

1.6.4 If |z| > 4, then
p(2)] > |2]° = 4|2]> =3|2| =3 > [2]° 4]z’ = 3|2 = 3|2 = [« (|z[*~10) > 6-4°.



How did we come by the num-
ber 37 We started the computa-
tion, until we got to the expres-
sion |z|* — 7, which we needed to
be positive. The number 3 works,
and 2 does not; 2.7 works too.

Solution 1.6.7: Although our
function ¢ is differentiable on a
neighborhood of a and b, we can-
not apply proposition 1.6.11 if the
minimum occurs at one of those
points, since ¢ would not be a max-
imum on a neighborhood of the
point.
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Since the disk |z| < 4 is closed and bounded, and since |p(z)| is continuous,
the function |p(z)| has a minimum in the disk |z| < 4 at some point z.
Since |p(0)| = 3, the minimum value is smaller than 3, so |z9| # 4, and is
the absolute minimum of |p(z)| over all of C. We know that then z; is a
root of p.

1.6.5 a. Suppose |z| > 3. Then

121° = a(2)] > 2° = (4]2]* + [2] +2) > |2|° = (4]2]* + |2|* + 2]2]*)
=2[*(]z2 =7) > (9-7)-3* = 162.

b. Since p(0) = 2, but when |z| > 3 we have |p(z)| > |2|° — |q(2)] > 162,
the minimum of |p| on the disc of radius Ry = 3 around the origin must be
the absolute minimum of |p|. Notice that this minimum must exist, since it
is a minimum of the continuous function |p(z)| on the closed and bounded
set |z] < 3 of C.

1.6.6 a. The function xze~? has derivative (1 — z)e~® which is negative if
x> 1. Hence sup,cpy oy ze * =1-e"" =1/e. So

sup [zle” 1" = sup  |zle” 17,

z€R ze[—1,1]
and this supremum is achieved, since |z|e~*! is a continuous function and
[—1,1] is compact.
b. The maximum value must occur on (0,00), hence at a point where
the function is differentiable, and the derivative is 0. This happens only at
x = 1, so the absolute maximum value is 1/e.

c. The image of f is certainly contained in [0, 1/¢], since the function
takes only non-negative values, and it has an absolute maximum value of
1/e. Given any y € [0,1/e], the function f(z) —yis <0 at 0 and >0 at 1,
so by the intermediate value theorem it must vanish for some z € [0, 1], so
every y € [0,1/¢] is in the image of f.

1.6.7 Consider the function g(z) = f(x) — maz. This is a continuous
function on the closed and bounded set [a, b], so it has a minimum at some
point ¢ € [a,b]. Let us see that ¢ # a and ¢ # b. Since ¢'(a) = f'(a)—m < 0,
we have
L glath) ~ gla)
h—0 h
Let us spell this out: for every e > 0, there exists § > 0 such that 0 < |h| < ¢
implies

< 0.

‘g(a + h})L — g(a) _ g/(a)

Choose € = |¢’'(a)|/2, and find a corresponding ¢ > 0, and set h = 6/2.
Then the inequality

‘g(a + h}z B g(a) o gl(a)
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implies that

oot 1)~ gla) _g'a)
h 2
and since h > 0 we have g(a + h) < g(a), so a is not the minimum of g.
Similarly, b is not the minimum:

L 9o+ h) — g(b)
h—0 h

<0

=g (b)—m > 0.

Express this again in terms of €’s and §’s, choose ¢ = ¢'(b)/2, and set
h = —4§/2. As above, we have
g(b+h)—g®) _ ¢'(b)

> >0,
h 2

and since h < 0, this implies g(b+ h) < g(b).
So ¢ € (a,b), and in particular ¢ in a minimum on (a,b), so
g'(¢) = f'(¢) — m = 0 by proposition 1.6.11.

1.6.8 In order for the sequence sin 10" to have a subsequence that con-
verges to a limit in [.7,.8], it is necessary that 10™ radians be either in the
arc of circle bounded by arcsin.7 and arcsin.8 or in the arc bounded by
(m —arcsin.7) and (7w — arcsin .8), since these also have sines in the desired
interval.

As described in the example, it is easier to think that 10" /(27) turns
(as opposed to radians) lies in the same arcs. Since the whole turns don’t
count, this means that the fractional part of 10" /(27) turns lies in the arcs
above, i.e., that the number obtained by moving the decimal point to the
right by n positions and discarding the part to the left of it lies in the
intervals.

The following picture illustrates where the sine lies, and where the num-
bers “fractional part of 10™/(27)” must lie.

0.35241.. 0.2 turms. 0-14758...
3 turns\—| -
037653 08 W 0.123408...
~ e
0.4 turns 0.7 0.1 turns

/

The calculator says
arcsin.7/(2m) &~ .123408, and .5 — arcsin.7/(27) ~ .3765
arcsin .8/(2m) ~ .14758, and .5 —arcsin.7/(27) ~ .35241,



a+k

b

FIGURE FOR SOLUTION 1.6.9
A first error to avoid is writing
“a + bu’ is between 0 and a” as

“D<a+bi! <a”

Remember that a, b, and w are
complex numbers so that writ-
ing that sort of inequality doesn’t
make sense. If we set k = bu’ to
simpify notation, then a + k is be-
tween 0 and a if a—(a+k) = kis on
the same line as a and points in the
opposite direction, witih |k| < |al.

The proof given essentially re-
proves proposition 0.7.7. If you
want to use that proposition in-
stead, you could say:

If a + bu’ is between 0 and a,
then there exists p with 0 < p <1
such that
(p—1)a

b
This equation has j solutions by
proposition 0.7.7, and

lul = (1 = p)la/b| < |a/bl,

a+bu’ = pa, ie., v’ =

so we can take po = \a/b|1/j-
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we see that in order for the sequence sin 10" to have a subsequence with
a limit in [.7,.8], it is necessary that there be infinitely many 1’s in the
decimal expansion of 1/(27), or infinitely many 3’s (or both). In fact,
we can say more: there must be infinitely many 1’s followed by 2,3 or
4, or infinitely many 3’s followed by 5,6 or 7 (or both). Even these are
not sufficient conditions; but a sufficient condition would be that there are
infinitely many 1 followed by 3, or infinitely many 3’s followed by 6.

Remark. According to Maple,

1
o0 = .15915494309189533576888376337251436203445964574045
us

644874766734405889679763422653509011338027662530860 . . .

to 100 places. We do see a few such sequences of two digits (three of them
if T counted up right). This is about what one would expect for a random
sequence of digits, but not really evidence one way or the other for whether
there is a limit

1.6.9 A first error to avoid is writing “a 4+ bu’ is between 0 and a” as
“0 < a+bu! < a.” Remember that a,b, and u are complex numbers, so
that writing that sort of inequality doesn’t make sense. “Between 0 and a”
means that if you plot @ as a point in R? in the usual way (real part of a
on the z-axis, imaginary part on the y-axis), then a + bu’ lies on the line
connecting the origin and the point a.
For this to happen, bu/ must point in the opposite direction as a, and
we must have [bu’| < |a|. Write
a=ry(coswy + isinw)
b = ro(coswa + isinws)
u = p(cosf +isind).
Then
a+bu! =ri(coswy +isinw) + rop’ (cos(ws + jO) + isin(ws + 56)).

Then bu’ will point in the opposite direction from a if
1
wo + j0 = wy + w+ 2k for some k, ie. , 0 = = (w1 — wo + 7+ 2k7),
J

and we find j distinct such angles by taking £ =0,1,...,5 — 1.
The condition |bu’| < |a| becomes rop’ < 71, so we can take 0 < p <

i def
(r1/r2)"7 = po.
1.6.10
1.6.11 Set p(z) = 2* + ap_12" 1 + -+ + a1z + ap with k odd. Choose

C =sup{l, |ak_1],-.-,|aol}
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and set A = kC + 1. Then if z < —A we have
p(r) =2F +ap_12" P+ agx +ag
< (A4 CAF Y 4 4 O < —AF 4 ECAFT!
= AN (kC - A) = —AF1 <.
Similarly, if x > A we have
p(z) =2 +ap_ 12"+ Farz 4 ap
> Ak —cAF - 0> AR — kAR
= AN A -kC) = A1 > 0.
Since p : [-4, A] — R is a continuous function (corollary 1.5.30) and we
have p(—A) < 0 and p(A) > 0, then by the intermediate value theorem
there exists xo € [—A, A] such that p(xo) = 0.
1.7.1 a. f(a) =0, f'(a) = cos(a) = 1 so the tangent is g(z) = =.
b. f(a) =1, f'(a) = —sin(a) = 7@ so the tangent is

c. fla)=1, f'(a) = —sin(a) = 0 so the tangent is g(x) = 1.
d. f(a) =2, f'(a) = =% = —4 so the tangent is

g(x) = —4(x —1/2) +2 = -4z + 4.

1.7.2 We need to find a such that if the graph of g is the tangent at a,
then g(0) = 0. Since the tangent is
glx)=e"*—e %z —a),
we have
g(0)=e"“4ae *=0,
SO

e “(1+a)=0, whichgives a=—1.

1.7.3 a. f'(x) = (3 sin?(2? + cos x)) (Cos(m2 + cos :c)) <2x — sin z)

2 cos((z + sin x)2)) (— sin((x + sin x)2)) <2(ac + sinz)) (1 + cos ac)

= (
( cosx)” + sin :c) <4(COS x)g) (—sin(x)) = (cosz)® — 4(sin x)?(cos x)*
3

(z +sin® z)%(1 + 4 sin® z cos )

d. f'(z)

sin® z(cosx? * 22)  sinz?(3sin®xzcosz)  (sinz?sin® x)(cos )

e. f'(z) = i + § —

2+ sin(x) 2 + sin(a) (2 + sin(z))”
1) =con () (s — )
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1.7.4 a. If f(z) = |z[?/?, then
‘ |3/2

h

/ =i = 1i 1/2:
F1(0) = lim lim |h| 0,

so the derivative does exist. But
F(O4h) = £(0) = hf'(0) = [n]*/?

is larger than h?, since the limit

Jim | > _ lim |h|~1/?
h—0 h?2 h—0
is infinite.
b. If f(z) = zIn|z|, then the limit
. hln|h| .
! pr— —
£(0) = lim — lim In |,

is infinite, and the derivative does not exist.
c. If f(x) =2/Iln|x|, then
1
"(0) = lim ——— = lim —— =0
FU0) = fim o = e =

so the derivative does exist. But

F0+1) = F0) = h'(0) =

is larger than h?, since the limit

I = i
o0 h2In |A] Ao hln |h]

is infinite: the denominator tends to 0 as h tends to 0.

1.7.5 a. Compute the partial derivatives:

le(z”) :%ﬂ and DQf(f?j) - ﬁ

This gives

o (1) - v o 2 () -

At the point (_%), we have 2 +y < 0, so the function is not defined

there, and neither are the partial derivatives.

b. Similarly, Dy f (g) = 2xy and Dy f (g) = 22 + 4y3. This gives

le(%) —4 and Dgf(%) —4t4=8;

le(_%) =4 and sz(_é) — 144 (-8) =31
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c. Compute
Dif (ayc) = —ysinzy
Dof (Zj) = —xsinxy + cosy — ysiny.
This gives
Dy f (%) =—sin2 and Dof (%) = —2sin2+4cosl —sinl
D f (_%) = —2sin2 and Dyf (_%) =sin2+4cos2 —2sin2 = cos2 — sin2
d. Since

2 4 2 3
x\ Ty +2y (x)_% y+ay
le(y) = —2(x+y2)3/2 and Dsf y) = —(o:+y2)3/27

we have
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1.7.6 a. We have

7 —sinz 7 0
()|, | (6= |
r 22 cos(z? — y) Y —cos(z? — y)
b. Similarly,
S x - y
of T z2+y? of T z2+y?
ORI R TR
oxr \Y . oy \Y .
2ysinzy cosxy 2x sinxy cosxy

1.7.7 Just pile up the partial derivative vectors side by side:

—sinx 0
a. [Df(x)} = 2zy 2% + 2y
Y | 2z cos(z? —y) —cos(z? —y)
- . y
b [DE(2)] = Vorty? Ve iy
. y y €T
| 2ysinxy cosxy 2xsinzy cosxy

1.7.8 a. Dy f; =2z cos(x? +y), Dafs = cos(z? +y), Dafo = we®?
b. 3 x 2.
1.7.9 a. The derivative is an m X n matrix

b. a1 x 3 matrix (line matrix)

c. a4 x 1 matrix (vector 4 high)



