So if you set $\delta=\epsilon$, and $|H| \leq \delta$, then equation (2) is satisfied.
c. We will show that the limit does not exist. In this case, we find

$$
\begin{aligned}
(A+H-A)^{-1}(A+H)^{2}-A^{2} & =H^{-1}\left(I^{2}+A H+H A+H^{2}-I^{2}\right) \\
& =H^{-1}\left(A H+H A+H^{2}\right)=A+H^{-1} A H+H^{2}
\end{aligned}
$$

If the limit exists, it must be $2 A$: choose $H=\epsilon I$ so that $H^{-1}=\epsilon^{-1} I$; then

$$
A+H^{-1} A H+H^{2}=2 A+\epsilon I
$$

is close to $2 A$.
But if you choose $H=\epsilon\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, you will find that

$$
H^{-1} A H=\left[\begin{array}{cc}
1 / \epsilon & 0 \\
0 & -1 / \epsilon
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=-A
$$

So with this H we have

$$
A+H^{-1} A H+H^{2}=A-A+\epsilon H
$$

which is close to the zero matrix.

1.5.24

1.6.1 Let B be a set contained in a ball of radius R centered at a point a. Then it is also contained in a ball of radius $R+|\mathbf{a}|$ centered at the origin; thus it is bounded.
1.6.2 First, remember that compact is equivalent to closed and bounded so if A is not compact then A is unbounded and/or not closed. If A is unbounded then the hint is sufficient. If A is not closed then A has a limit point a not in A : i.e., there exists a sequence in A that converges in \mathbb{R}^{n} to a point $\mathbf{a} \notin A$. Use this \mathbf{a} as the \mathbf{a} in the hint.
1.6.3 The polynomial $p(z)=1+x^{2} y^{2}$ has no roots because 1 plus something positive cannot be 0 . This does not contradict the fundamental theorem of algebra because although p is a polynomial in the real variables x and y, it is not a polynomial in the complex variable z : it is a polynomial in z and \bar{z}. It is possible to write $p(z)=1+x^{2} y^{2}$ in terms of z and \bar{z}. You can use

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z-\bar{z}}{2 i}
$$

and find

$$
\begin{equation*}
p(z)=1+\frac{z^{4}-2|z|^{4}+\bar{z}^{4}}{-16} \tag{1}
\end{equation*}
$$

but you simply cannot get rid of the \bar{z}.
1.6.4 If $|z| \geq 4$, then

$$
|p(z)| \geq|z|^{5}-4|z|^{3}-3|z|-3>|z|^{5}-4|z|^{3}-3|z|^{3}-3|z|^{3}=|z|^{3}\left(|z|^{2}-10\right) \geq 6 \cdot 4^{3}
$$

How did we come by the number 3? We started the computation, until we got to the expression $|z|^{2}-7$, which we needed to be positive. The number 3 works, and 2 does not; 2.7 works too.

Solution 1.6.7: Although our function g is differentiable on a neighborhood of a and b, we cannot apply proposition 1.6.11 if the minimum occurs at one of those points, since c would not be a maximum on a neighborhood of the point.

Since the disk $|z| \leq 4$ is closed and bounded, and since $|p(z)|$ is continuous, the function $|p(z)|$ has a minimum in the disk $|z| \leq 4$ at some point z_{0}. Since $|p(0)|=3$, the minimum value is smaller than 3 , so $\left|z_{0}\right| \neq 4$, and is the absolute minimum of $|p(z)|$ over all of \mathbb{C}. We know that then z_{0} is a root of p.
1.6 .5 a. Suppose $|z|>3$. Then

$$
\begin{aligned}
|z|^{6}-|q(z)| & \geq|z|^{6}-\left(4|z|^{4}+|z|+2\right) \geq|z|^{6}-\left(4|z|^{4}+|z|^{4}+2|z|^{4}\right) \\
& =|z|^{4}\left(|z|^{2}-7\right) \geq(9-7) \cdot 3^{4}=162
\end{aligned}
$$

b. Since $p(0)=2$, but when $|z|>3$ we have $|p(z)| \geq|z|^{6}-|q(z)| \geq 162$, the minimum of $|p|$ on the disc of radius $R_{1}=3$ around the origin must be the absolute minimum of $|p|$. Notice that this minimum must exist, since it is a minimum of the continuous function $|p(z)|$ on the closed and bounded set $|z| \leq 3$ of \mathbb{C}.
1.6.6 a. The function $x e^{-x}$ has derivative $(1-x) e^{-x}$ which is negative if $x>1$. Hence $\sup _{x \in[1, \infty)} x e^{-x}=1 \cdot e^{-1}=1 / e$. So

$$
\sup _{x \in \mathbb{R}}|x| e^{-|x|}=\sup _{x \in[-1,1]}|x| e^{-|x|}
$$

and this supremum is achieved, since $|x| e^{-|x|}$ is a continuous function and $[-1,1]$ is compact.
b. The maximum value must occur on $(0, \infty)$, hence at a point where the function is differentiable, and the derivative is 0 . This happens only at $x=1$, so the absolute maximum value is $1 / e$.
c. The image of f is certainly contained in $[0,1 / e]$, since the function takes only non-negative values, and it has an absolute maximum value of $1 / e$. Given any $y \in[0,1 / e]$, the function $f(x)-y$ is ≤ 0 at 0 and ≥ 0 at 1 , so by the intermediate value theorem it must vanish for some $x \in[0,1]$, so every $y \in[0,1 / e]$ is in the image of f.
1.6.7 Consider the function $g(x)=f(x)-m x$. This is a continuous function on the closed and bounded set $[a, b]$, so it has a minimum at some point $c \in[a, b]$. Let us see that $c \neq a$ and $c \neq b$. Since $g^{\prime}(a)=f^{\prime}(a)-m<0$, we have

$$
\lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h}<0
$$

Let us spell this out: for every $\epsilon>0$, there exists $\delta>0$ such that $0<|h|<\delta$ implies

$$
\left|\frac{g(a+h)-g(a)}{h}-g^{\prime}(a)\right|<\epsilon .
$$

Choose $\epsilon=\left|g^{\prime}(a)\right| / 2$, and find a corresponding $\delta>0$, and set $h=\delta / 2$. Then the inequality

$$
\left|\frac{g(a+h)-g(a)}{h}-g^{\prime}(a)\right|<\frac{\left|g^{\prime}(a)\right|}{2}
$$

implies that

$$
\frac{g(a+h)-g(a)}{h}<\frac{g^{\prime}(a)}{2}<0
$$

and since $h>0$ we have $g(a+h)<g(a)$, so a is not the minimum of g.
Similarly, b is not the minimum:

$$
\lim _{h \rightarrow 0} \frac{g(b+h)-g(b)}{h}=g^{\prime}(b)-m>0 .
$$

Express this again in terms of ϵ 's and δ^{\prime} 's, choose $\epsilon=g^{\prime}(b) / 2$, and set $h=-\delta / 2$. As above, we have

$$
\frac{g(b+h)-g(b)}{h}>\frac{g^{\prime}(b)}{2}>0
$$

and since $h<0$, this implies $g(b+h)<g(b)$.
So $c \in(a, b)$, and in particular c in a minimum on (a, b), so $g^{\prime}(c)=f^{\prime}(c)-m=0$ by proposition 1.6.11.
1.6.8 In order for the sequence $\sin 10^{n}$ to have a subsequence that converges to a limit in $[.7, .8]$, it is necessary that 10^{n} radians be either in the arc of circle bounded by arcsin .7 and $\arcsin .8$ or in the arc bounded by ($\pi-\arcsin .7)$ and $(\pi-\arcsin .8)$, since these also have sines in the desired interval.

As described in the example, it is easier to think that $10^{n} /(2 \pi)$ turns (as opposed to radians) lies in the same arcs. Since the whole turns don't count, this means that the fractional part of $10^{n} /(2 \pi)$ turns lies in the arcs above, i.e., that the number obtained by moving the decimal point to the right by n positions and discarding the part to the left of it lies in the intervals.

The following picture illustrates where the sine lies, and where the numbers "fractional part of $10^{n} /(2 \pi)$ " must lie.

The calculator says

$$
\begin{array}{r}
\arcsin .7 /(2 \pi) \approx .123408, \quad \text { and } \quad .5-\arcsin .7 /(2 \pi) \approx .3765 \\
\arcsin .8 /(2 \pi) \approx .14758, \quad \text { and } \quad .5-\arcsin .7 /(2 \pi) \approx .35241,
\end{array}
$$

Figure for solution 1.6.9
A first error to avoid is writing " $a+b u^{j}$ is between 0 and a " as

$$
" 0<a+b u^{j}<a . "
$$

Remember that a, b, and u are complex numbers so that writing that sort of inequality doesn't make sense. If we set $k=b u^{j}$ to simpify notation, then $a+k$ is between 0 and a if $a-(a+k)=k$ is on the same line as a and points in the opposite direction, witih $|k|<|a|$.

The proof given essentially reproves proposition 0.7.7. If you want to use that proposition instead, you could say:

If $a+b u^{j}$ is between 0 and a, then there exists ρ with $0<\rho<1$ such that
$a+b u^{j}=\rho a$, i.e., $u^{j}=\frac{(\rho-1) a}{b}$.
This equation has j solutions by proposition 0.7.7, and

$$
|u|=(1-\rho)|a / b|<|a / b|,
$$

so we can take $p_{0}=|a / b|^{1 / j}$.
we see that in order for the sequence $\sin 10^{n}$ to have a subsequence with a limit in $[.7, .8]$, it is necessary that there be infinitely many 1 's in the decimal expansion of $1 /(2 \pi)$, or infinitely many 3 's (or both). In fact, we can say more: there must be infinitely many 1 's followed by 2,3 or 4 , or infinitely many 3 's followed by 5,6 or 7 (or both). Even these are not sufficient conditions; but a sufficient condition would be that there are infinitely many 1 followed by 3 , or infinitely many 3 's followed by 6 .
Remark. According to Maple,

$$
\begin{aligned}
\frac{1}{2 \pi}= & .15915494309189533576888376337251436203445964574045 \\
& 644874766734405889679763422653509011338027662530860 \ldots
\end{aligned}
$$

to 100 places. We do see a few such sequences of two digits (three of them if I counted up right). This is about what one would expect for a random sequence of digits, but not really evidence one way or the other for whether there is a limit
1.6.9 A first error to avoid is writing " $a+b u^{j}$ is between 0 and a " as " $0<a+b u^{j}<a$." Remember that a, b, and u are complex numbers, so that writing that sort of inequality doesn't make sense. "Between 0 and a " means that if you plot a as a point in \mathbb{R}^{2} in the usual way (real part of a on the x-axis, imaginary part on the y-axis), then $a+b u^{j}$ lies on the line connecting the origin and the point a.

For this to happen, $b u^{j}$ must point in the opposite direction as a, and we must have $\left|b u^{j}\right|<|a|$. Write

$$
\begin{aligned}
a & =r_{1}\left(\cos \omega_{1}+i \sin \omega_{1}\right) \\
b & =r_{2}\left(\cos \omega_{2}+i \sin \omega_{2}\right) \\
u & =p(\cos \theta+i \sin \theta) .
\end{aligned}
$$

Then

$$
a+b u^{j}=r_{1}\left(\cos \omega_{1}+i \sin \omega_{1}\right)+r_{2} p^{j}\left(\cos \left(\omega_{2}+j \theta\right)+i \sin \left(\omega_{2}+j \theta\right)\right)
$$

Then $b u^{j}$ will point in the opposite direction from a if

$$
\omega_{2}+j \theta=\omega_{1}+\pi+2 k \pi \text { for some } k \text {, i.e. , } \theta=\frac{1}{j}\left(\omega_{1}-\omega_{2}+\pi+2 k \pi\right)
$$

and we find j distinct such angles by taking $k=0,1, \ldots, j-1$.
The condition $\left|b u^{j}\right|<|a|$ becomes $r_{2} p^{j}<r_{1}$, so we can take $0<p<$ $\left(r_{1} / r_{2}\right)^{1 / j} \stackrel{\text { def }}{=} p_{0}$.

1.6 .10

1.6.11 Set $p(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ with k odd. Choose

$$
C=\sup \left\{1,\left|a_{k-1}\right|, \ldots,\left|a_{0}\right|\right\}
$$

and set $A=k C+1$. Then if $x \leq-A$ we have

$$
\begin{aligned}
p(x) & =x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \\
& \leq(-A)^{k}+C A^{k-1}+\cdots+C \leq-A^{k}+k C A^{k-1} \\
& =A^{k-1}(k C-A)=-A^{k-1} \leq 0 .
\end{aligned}
$$

Similarly, if $x \geq A$ we have

$$
\begin{aligned}
p(x) & =x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \\
& \geq(A)^{k}-C A^{k-1}-\cdots-C \geq A^{k}-k C A^{k-1} \\
& =A^{k-1}(A-k C)=A^{k-1} \geq 0
\end{aligned}
$$

Since $p:[-A, A] \rightarrow \mathbb{R}$ is a continuous function (corollary 1.5.30) and we have $p(-A) \leq 0$ and $p(A) \geq 0$, then by the intermediate value theorem there exists $x_{0} \in[-A, A]$ such that $p\left(x_{0}\right)=0$.
1.7.1 a. $f(a)=0, f^{\prime}(a)=\cos (a)=1$ so the tangent is $g(x)=x$.
b. $f(a)=\frac{1}{2}, f^{\prime}(a)=-\sin (a)=-\frac{\sqrt{3}}{2}$ so the tangent is

$$
g(x)=-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)+\frac{1}{2}
$$

c. $f(a)=1, f^{\prime}(a)=-\sin (a)=0$ so the tangent is $g(x)=1$.
d. $f(a)=2, f^{\prime}(a)=-\frac{1}{a^{2}}=-4$ so the tangent is

$$
g(x)=-4(x-1 / 2)+2=-4 x+4
$$

1.7.2 We need to find a such that if the graph of g is the tangent at a, then $g(0)=0$. Since the tangent is

$$
g(x)=e^{-a}-e^{-a}(x-a)
$$

we have

$$
g(0)=e^{-a}+a e^{-a}=0
$$

so

$$
e^{-a}(1+a)=0, \quad \text { which gives } \quad a=-1
$$

1.7 .3 a. $f^{\prime}(x)=\left(3 \sin ^{2}\left(x^{2}+\cos x\right)\right)\left(\cos \left(x^{2}+\cos x\right)\right)(2 x-\sin x)$
b. $f^{\prime}(x)=\left(2 \cos \left((x+\sin x)^{2}\right)\right)\left(-\sin \left((x+\sin x)^{2}\right)\right)(2(x+\sin x))(1+\cos x)$
c. $f^{\prime}(x)=\left((\cos x)^{5}+\sin x\right)\left(4(\cos x)^{3}\right)(-\sin (x))=(\cos x)^{5}-4(\sin x)^{2}(\cos x)^{3}$
d. $f^{\prime}(x)=3\left(x+\sin ^{4} x\right)^{2}\left(1+4 \sin ^{3} x \cos x\right)$
e. $f^{\prime}(x)=\frac{\sin ^{3} x\left(\cos x^{2} * 2 x\right)}{2+\sin (x)}+\frac{\sin x^{2}\left(3 \sin ^{2} x \cos x\right)}{2+\sin (x)}-\frac{\left(\sin x^{2} \sin ^{3} x\right)(\cos x)}{(2+\sin (x))^{2}}$
f. $f^{\prime}(x)=\cos \left(\frac{x^{3}}{\sin x^{2}}\right)\left(\frac{3 x^{2}}{\sin x^{2}}-\frac{\left(x^{3}\right)\left(\cos x^{2} * 2 x\right)}{\left(\sin x^{2}\right)^{2}}\right)$
1.7.4 a. If $f(x)=|x|^{3 / 2}$, then

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|h|^{3 / 2}}{h}=\lim _{h \rightarrow 0}|h|^{1 / 2}=0
$$

so the derivative does exist. But

$$
f(0+h)-f(0)-h f^{\prime}(0)=|h|^{3 / 2}
$$

is larger than h^{2}, since the limit

$$
\lim _{h \rightarrow 0} \frac{|h|^{3 / 2}}{h^{2}}=\lim _{h \rightarrow 0}|h|^{-1 / 2}
$$

is infinite.
b. If $f(x)=x \ln |x|$, then the limit

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h \ln |h|}{h}=\lim _{h \rightarrow 0} \ln |h|,
$$

is infinite, and the derivative does not exist.
c. If $f(x)=x / \ln |x|$, then

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h}{h \ln |h|}=\lim _{h \rightarrow 0} \frac{1}{\ln |h|}=0
$$

so the derivative does exist. But

$$
f(0+h)-f(0)-h f^{\prime}(0)=\frac{h}{\ln |h|}
$$

is larger than h^{2}, since the limit

$$
\lim _{h \rightarrow 0} \frac{h}{h^{2} \ln |h|}=\lim _{h \rightarrow 0} \frac{1}{h \ln |h|}
$$

is infinite: the denominator tends to 0 as h tends to 0 .
1.7.5 a. Compute the partial derivatives:

$$
D_{1} f\binom{x}{y}=\frac{x}{\sqrt{x^{2}+y}} \quad \text { and } \quad D_{2} f\binom{x}{y}=\frac{1}{2 \sqrt{x^{2}+y}}
$$

This gives

$$
D_{1} f\binom{2}{1}=\frac{2}{\sqrt{2^{2}+1}}=\frac{2}{\sqrt{5}} \quad \text { and } \quad D_{2} f\binom{2}{1}=\frac{1}{2 \sqrt{2^{2}+1}}=\frac{1}{2 \sqrt{5}}
$$

At the point $\binom{1}{-2}$, we have $x^{2}+y<0$, so the function is not defined there, and neither are the partial derivatives.
b. Similarly, $D_{1} f\binom{x}{y}=2 x y$ and $D_{2} f\binom{x}{y}=x^{2}+4 y^{3}$. This gives

$$
\begin{gathered}
D_{1} f\binom{2}{1}=4 \quad \text { and } \quad D_{2} f\binom{2}{1}=4+4=8 \\
D_{1} f\binom{1}{-2}=-4 \quad \text { and } \quad D_{2} f\binom{1}{-2}=1+4 \cdot(-8)=-31 .
\end{gathered}
$$

c. Compute

$$
\begin{aligned}
& D_{1} f\binom{x}{y}=-y \sin x y \\
& D_{2} f\binom{x}{y}=-x \sin x y+\cos y-y \sin y
\end{aligned}
$$

This gives

$$
\begin{aligned}
D_{1} f\binom{2}{1} & =-\sin 2 \quad \text { and } \quad D_{2} f\binom{2}{1}=-2 \sin 2+\cos 1-\sin 1 \\
D_{1} f\binom{1}{-2} & =-2 \sin 2 \quad \text { and } \quad D_{2} f\binom{1}{-2}=\sin 2+\cos 2-2 \sin 2=\cos 2-\sin 2
\end{aligned}
$$

d. Since

$$
D_{1} f\binom{x}{y}=\frac{x y^{2}+2 y^{4}}{2\left(x+y^{2}\right)^{3 / 2}} \quad \text { and } \quad D_{2} f\binom{x}{y}=\frac{2 x^{2} y+x y^{3}}{\left(x+y^{2}\right)^{3 / 2}}
$$

we have

$$
\begin{aligned}
D_{1} f\binom{2}{1} & =\frac{4}{2 \sqrt{27}} \quad \text { and } \quad D_{2} f\binom{2}{1}=\frac{10}{\sqrt{27}} \\
D_{1} f\binom{1}{-2} & =\frac{36}{10 \sqrt{5}} \quad \text { and } \quad D_{2} f\binom{1}{-2}=-\frac{12}{5 \sqrt{5}} .
\end{aligned}
$$

1.7.6 a. We have

$$
\frac{\partial \overrightarrow{\mathbf{f}}}{\partial x}\binom{x}{y}=\left[\begin{array}{c}
-\sin x \\
2 x y \\
2 x \cos \left(x^{2}-y\right)
\end{array}\right] \quad \text { and } \quad \frac{\partial \overrightarrow{\mathbf{f}}}{\partial y}\binom{x}{y}=\left[\begin{array}{c}
0 \\
x^{2}+2 y \\
-\cos \left(x^{2}-y\right)
\end{array}\right]
$$

b. Similarly,

$$
\frac{\partial \overrightarrow{\mathbf{f}}}{\partial x}\binom{x}{y}=\left[\begin{array}{c}
\frac{x}{\sqrt{x^{2}+y^{2}}} \\
y \\
2 y \sin x y \cos x y
\end{array}\right] \quad \text { and } \quad \frac{\partial \overrightarrow{\mathbf{f}}}{\partial y}\binom{x}{y}=\left[\begin{array}{c}
\frac{y}{\sqrt{x^{2}+y^{2}}} \\
x \\
2 x \sin x y \cos x y
\end{array}\right]
$$

1.7.7 Just pile up the partial derivative vectors side by side:

$$
\begin{aligned}
& \text { a. }\left[\mathbf{D} \overrightarrow{\mathbf{f}}\binom{x}{y}\right]=\left[\begin{array}{cc}
-\sin x & 0 \\
2 x y & x^{2}+2 y \\
2 x \cos \left(x^{2}-y\right) & -\cos \left(x^{2}-y\right)
\end{array}\right] \\
& \text { b. }\left[\mathbf{D} \overrightarrow{\mathbf{f}}\binom{x}{y}\right]=\left[\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
y & x \\
2 y \sin x y \cos x y & 2 x \sin x y \cos x y
\end{array}\right] .
\end{aligned}
$$

1.7.8 a. $D_{1} f_{1}=2 x \cos \left(x^{2}+y\right), D_{2} f_{1}=\cos \left(x^{2}+y\right), D_{2} f_{2}=x e^{x y}$ b. 3×2.
1.7.9 a. The derivative is an $m \times n$ matrix
b. a 1×3 matrix (line matrix)
c. a 4×1 matrix (vector 4 high)

