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So if you set δ = ϵ, and |H| ≤ δ, then equation (2) is satisfied.
c. We will show that the limit does not exist. In this case, we find

(A + H −A)−1(A + H)2 −A2 = H−1(I2 + AH + HA + H2 − I2)

= H−1(AH + HA + H2) = A + H−1AH + H2.

If the limit exists, it must be 2A: choose H = ϵI so that H−1 = ϵ−1I; then

A + H−1AH + H2 = 2A + ϵI

is close to 2A.
But if you choose H = ϵ

[
1 0
0 −1

]
, you will find that

H−1AH =
[

1/ϵ 0
0 −1/ϵ

] [
0 1
1 0

] [
ϵ 0
0 ϵ

]
=
[

0 −1
−1 0

]
= −A.

So with this H we have

A + H−1AH + H2 = A−A + ϵH

which is close to the zero matrix.

1.5.24

1.6.1 Let B be a set contained in a ball of radius R centered at a point a.
Then it is also contained in a ball of radius R + |a| centered at the origin;
thus it is bounded.

1.6.2 First, remember that compact is equivalent to closed and bounded
so if A is not compact then A is unbounded and/or not closed. If A is
unbounded then the hint is sufficient. If A is not closed then A has a limit
point a not in A: i.e., there exists a sequence in A that converges in Rn to
a point a /∈ A. Use this a as the a in the hint.

1.6.3 The polynomial p(z) = 1 + x2y2 has no roots because 1 plus some-
thing positive cannot be 0. This does not contradict the fundamental the-
orem of algebra because although p is a polynomial in the real variables x
and y, it is not a polynomial in the complex variable z: it is a polynomial
in z and z̄. It is possible to write p(z) = 1 + x2y2 in terms of z and z̄. You
can use

x =
z + z

2
and y =

z − z

2i
,

and find

p(z) = 1 +
z4 − 2|z|4 + z4

−16
(1)

but you simply cannot get rid of the z.

1.6.4 If |z| ≥ 4, then

|p(z)| ≥ |z|5−4|z|3−3|z|−3 > |z|5−4|z|3−3|z|3−3|z|3 = |z|3(|z|2−10) ≥ 6·43.
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Since the disk |z| ≤ 4 is closed and bounded, and since |p(z)| is continuous,
the function |p(z)| has a minimum in the disk |z| ≤ 4 at some point z0.
Since |p(0)| = 3, the minimum value is smaller than 3, so |z0| ≠ 4, and is
the absolute minimum of |p(z)| over all of C. We know that then z0 is a
root of p.

1.6.5 a. Suppose |z| > 3. Then
How did we come by the num-

ber 3? We started the computa-
tion, until we got to the expres-
sion |z|2 − 7, which we needed to
be positive. The number 3 works,
and 2 does not; 2.7 works too.

|z|6 − |q(z)| ≥ |z|6 − (4|z|4 + |z| + 2) ≥ |z|6 − (4|z|4 + |z|4 + 2|z|4)
= |z|4(|z|2 − 7) ≥ (9− 7) · 34 = 162.

b. Since p(0) = 2, but when |z| > 3 we have |p(z)| ≥ |z|6 − |q(z)| ≥ 162,
the minimum of |p| on the disc of radius R1 = 3 around the origin must be
the absolute minimum of |p|. Notice that this minimum must exist, since it
is a minimum of the continuous function |p(z)| on the closed and bounded
set |z| ≤ 3 of C.

1.6.6 a. The function xe−x has derivative (1− x)e−x which is negative if
x > 1. Hence supx∈[1,∞) xe−x = 1 · e−1 = 1/e. So

sup
x∈R

|x|e−|x| = sup
x∈[−1,1]

|x|e−|x|,

and this supremum is achieved, since |x|e−|x| is a continuous function and
[−1, 1] is compact.

b. The maximum value must occur on (0,∞), hence at a point where
the function is differentiable, and the derivative is 0. This happens only at
x = 1, so the absolute maximum value is 1/e.

c. The image of f is certainly contained in [0, 1/e], since the function
takes only non-negative values, and it has an absolute maximum value of
1/e. Given any y ∈ [0, 1/e], the function f(x)− y is ≤ 0 at 0 and ≥ 0 at 1,
so by the intermediate value theorem it must vanish for some x ∈ [0, 1], so
every y ∈ [0, 1/e] is in the image of f .

1.6.7 Consider the function g(x) = f(x) − mx. This is a continuous
function on the closed and bounded set [a, b], so it has a minimum at some
point c ∈ [a, b]. Let us see that c ̸= a and c ̸= b. Since g′(a) = f ′(a)−m < 0,
we have

lim
h→0

g(a + h)− g(a)
h

< 0.

Let us spell this out: for every ϵ > 0, there exists δ > 0 such that 0 < |h| < δ
implies

Solution 1.6.7: Although our
function g is differentiable on a
neighborhood of a and b, we can-
not apply proposition 1.6.11 if the
minimum occurs at one of those
points, since c would not be a max-
imum on a neighborhood of the
point.

∣∣∣∣
g(a + h)− g(a)

h
− g′(a)

∣∣∣∣ < ϵ.

Choose ϵ = |g′(a)|/2, and find a corresponding δ > 0, and set h = δ/2.
Then the inequality

∣∣∣∣
g(a + h)− g(a)

h
− g′(a)

∣∣∣∣ <
|g′(a)|

2
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implies that

g(a + h)− g(a)
h

<
g′(a)

2
< 0

and since h > 0 we have g(a + h) < g(a), so a is not the minimum of g.
Similarly, b is not the minimum:

lim
h→0

g(b + h)− g(b)
h

= g′(b)−m > 0.

Express this again in terms of ϵ’s and δ’s, choose ϵ = g′(b)/2, and set
h = −δ/2. As above, we have

g(b + h)− g(b)
h

>
g′(b)

2
> 0,

and since h < 0, this implies g(b + h) < g(b).
So c ∈ (a, b), and in particular c in a minimum on (a, b), so

g′(c) = f ′(c)−m = 0 by proposition 1.6.11.

1.6.8 In order for the sequence sin 10n to have a subsequence that con-
verges to a limit in [.7, .8], it is necessary that 10n radians be either in the
arc of circle bounded by arcsin .7 and arcsin .8 or in the arc bounded by
(π− arcsin .7) and (π− arcsin .8), since these also have sines in the desired
interval.

As described in the example, it is easier to think that 10n/(2π) turns
(as opposed to radians) lies in the same arcs. Since the whole turns don’t
count, this means that the fractional part of 10n/(2π) turns lies in the arcs
above, i.e., that the number obtained by moving the decimal point to the
right by n positions and discarding the part to the left of it lies in the
intervals.

The following picture illustrates where the sine lies, and where the num-
bers “fractional part of 10n/(2π)” must lie.

0.4 turns

0.3 turns
0.35241...

0.1 turns

0.2 turns
0.3765... 0.123408...0.8

0.7

0.14758...

The calculator says

arcsin .7/(2π) ≈ .123408, and .5− arcsin .7/(2π) ≈ .3765

arcsin .8/(2π) ≈ .14758, and .5− arcsin .7/(2π) ≈ .35241,
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we see that in order for the sequence sin 10n to have a subsequence with
a limit in [.7, .8], it is necessary that there be infinitely many 1’s in the
decimal expansion of 1/(2π), or infinitely many 3’s (or both). In fact,
we can say more: there must be infinitely many 1’s followed by 2, 3 or
4, or infinitely many 3’s followed by 5, 6 or 7 (or both). Even these are
not sufficient conditions; but a sufficient condition would be that there are
infinitely many 1 followed by 3, or infinitely many 3’s followed by 6.

a

a+k

.
.

k

Figure for solution 1.6.9
A first error to avoid is writing
“a + buj is between 0 and a” as

“0 < a + buj < a.”

Remember that a, b, and u are
complex numbers so that writ-
ing that sort of inequality doesn’t
make sense. If we set k = buj to
simpify notation, then a + k is be-
tween 0 and a if a−(a+k) = k is on
the same line as a and points in the
opposite direction, witih |k| < |a|.

The proof given essentially re-
proves proposition 0.7.7. If you
want to use that proposition in-
stead, you could say:

If a + buj is between 0 and a,
then there exists ρ with 0 < ρ < 1
such that

a + buj = ρa, i.e., uj =
(ρ− 1)a

b
.

This equation has j solutions by
proposition 0.7.7, and

|u| = (1− ρ)|a/b| < |a/b|,

so we can take p0 = |a/b|1/j .

Remark. According to Maple,

1
2π

= .15915494309189533576888376337251436203445964574045

644874766734405889679763422653509011338027662530860 . . .

to 100 places. We do see a few such sequences of two digits (three of them
if I counted up right). This is about what one would expect for a random
sequence of digits, but not really evidence one way or the other for whether
there is a limit

1.6.9 A first error to avoid is writing “a + buj is between 0 and a” as
“0 < a + buj < a.” Remember that a, b, and u are complex numbers, so
that writing that sort of inequality doesn’t make sense. “Between 0 and a”
means that if you plot a as a point in R2 in the usual way (real part of a

on the x-axis, imaginary part on the y-axis), then a + buj lies on the line
connecting the origin and the point a.

For this to happen, buj must point in the opposite direction as a, and
we must have |buj | < |a|. Write

a = r1(cosω1 + i sinω1)

b = r2(cosω2 + i sinω2)

u = p(cos θ + i sin θ).

Then

a + buj = r1(cosω1 + i sinω1) + r2p
j
(
cos(ω2 + jθ) + i sin(ω2 + jθ)

)
.

Then buj will point in the opposite direction from a if

ω2 + jθ = ω1 + π + 2kπ for some k, i.e. , θ =
1
j
(ω1 − ω2 + π + 2kπ),

and we find j distinct such angles by taking k = 0, 1, . . . , j − 1.
The condition |buj | < |a| becomes r2pj < r1, so we can take 0 < p <

(r1/r2)1/j def= p0.

1.6.10

1.6.11 Set p(x) = xk + ak−1xk−1 + · · · + a1x + a0 with k odd. Choose

C = sup{1, |ak−1|, . . . , |a0|}
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and set A = kC + 1. Then if x ≤ −A we have

p(x) = xk + ak−1x
k−1 + · · · + a1x + a0

≤ (−A)k + CAk−1 + · · · + C ≤ −Ak + kCAk−1

= Ak−1(kC −A) = −Ak−1 ≤ 0.

Similarly, if x ≥ A we have

p(x) = xk + ak−1x
k−1 + · · · + a1x + a0

≥ (A)k − CAk−1 − · · ·− C ≥ Ak − kCAk−1

= Ak−1(A− kC) = Ak−1 ≥ 0.

Since p : [−A, A] → R is a continuous function (corollary 1.5.30) and we
have p(−A) ≤ 0 and p(A) ≥ 0, then by the intermediate value theorem
there exists x0 ∈ [−A, A] such that p(x0) = 0.

1.7.1 a. f(a) = 0, f ′(a) = cos(a) = 1 so the tangent is g(x) = x.
b. f(a) = 1

2 , f ′(a) = − sin(a) = −
√

3
2 so the tangent is

g(x) = −
√

3
2

(x− π

3
) +

1
2
.

c. f(a) = 1, f ′(a) = − sin(a) = 0 so the tangent is g(x) = 1.
d. f(a) = 2, f ′(a) = − 1

a2 = −4 so the tangent is

g(x) = −4(x− 1/2) + 2 = −4x + 4.

1.7.2 We need to find a such that if the graph of g is the tangent at a,
then g(0) = 0. Since the tangent is

g(x) = e−a − e−a(x− a),

we have

g(0) = e−a + ae−a = 0,

so

e−a(1 + a) = 0, which gives a = −1.

1.7.3 a. f ′(x) =
(
3 sin2(x2 + cos x)

)(
cos(x2 + cos x)

)(
2x− sinx

)

b. f ′(x) =
(
2 cos((x + sin x)2)

)(
− sin((x + sinx)2)

)(
2(x + sin x)

)(
1 + cos x

)

c. f ′(x) =
(
(cos x)5 + sinx

)(
4(cos x)3

)
(− sin(x)) = (cosx)5 − 4(sinx)2(cos x)3

d. f ′(x) = 3(x + sin4 x)2(1 + 4 sin3 x cos x)

e. f ′(x) =
sin3 x(cos x2 ∗ 2x)

2 + sin(x)
+

sinx2(3 sin2 x cos x)
2 + sin(x)

− (sinx2 sin3 x)(cos x)
(
2 + sin(x)

)2

f. f ′(x) = cos
(

x3

sinx2

)(
3x2

sinx2
− (x3)(cos x2 ∗ 2x)

(sinx2)2

)
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1.7.4 a. If f(x) = |x|3/2, then

f ′(0) = lim
h→0

|h|3/2

h
= lim

h→0
|h|1/2 = 0,

so the derivative does exist. But

f(0 + h)− f(0)− hf ′(0) = |h|3/2

is larger than h2, since the limit

lim
h→0

|h|3/2

h2
= lim

h→0
|h|−1/2

is infinite.
b. If f(x) = x ln |x|, then the limit

f ′(0) = lim
h→0

h ln |h|
h

= lim
h→0

ln |h|,

is infinite, and the derivative does not exist.
c. If f(x) = x/ ln |x|, then

f ′(0) = lim
h→0

h

h ln |h| = lim
h→0

1
ln |h| = 0,

so the derivative does exist. But

f(0 + h)− f(0)− hf ′(0) =
h

ln |h|

is larger than h2, since the limit

lim
h→0

h

h2 ln |h| = lim
h→0

1
h ln |h|

is infinite: the denominator tends to 0 as h tends to 0.

1.7.5 a. Compute the partial derivatives:

D1f
(

x
y

)
=

x√
x2 + y

and D2f
(

x
y

)
=

1
2
√

x2 + y
.

This gives

D1f
(

2
1
)

=
2√

22 + 1
=

2√
5

and D2f
(

2
1
)

=
1

2
√

22 + 1
=

1
2
√

5
.

At the point
(

1
−2
)
, we have x2 + y < 0, so the function is not defined

there, and neither are the partial derivatives.

b. Similarly, D1f
(

x
y

)
= 2xy and D2f

(
x
y

)
= x2 + 4y3. This gives

D1f
(

2
1
)

= 4 and D2f
(

2
1
)

= 4 + 4 = 8;

D1f
(

1
−2
)

= −4 and D2f
(

1
−2
)

= 1 + 4 · (−8) = −31.
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c. Compute

D1f
(

x
y

)
= −y sin xy

D2f
(

x
y

)
= −x sinxy + cos y − y sin y.

This gives

D1f
(

2
1
)

= − sin 2 and D2f
(

2
1
)

= −2 sin 2 + cos 1− sin 1

D1f
(

1
−2
)

= −2 sin 2 and D2f
(

1
−2
)

= sin 2 + cos 2− 2 sin 2 = cos 2− sin 2

d. Since

D1f
(

x
y

)
=

xy2 + 2y4

2(x + y2)3/2
and D2f

(
x
y

)
=

2x2y + xy3

(x + y2)3/2
,

we have

D1f
(

2
1
)

=
4

2
√

27
and D2f

(
2
1
)

=
10√
27

;

D1f
(

1
−2
)

=
36

10
√

5
and D2f

(
1
−2
)

= − 12
5
√

5
.

1.7.6 a. We have

∂ f⃗
∂x

(
x
y

)
=

⎡

⎣
− sinx
2xy

2x cos(x2 − y)

⎤

⎦ and
∂ f⃗
∂y

(
x
y

)
=

⎡

⎣
0

x2 + 2y
− cos(x2 − y)

⎤

⎦ .

b. Similarly,

∂ f⃗
∂x

(
x
y

)
=

⎡

⎣
x√

x2+y2

y
2y sin xy cos xy

⎤

⎦ and
∂ f⃗
∂y

(
x
y

)
=

⎡

⎣
y√

x2+y2

x
2x sin xy cos xy

⎤

⎦ .

1.7.7 Just pile up the partial derivative vectors side by side:

a.
[
Df⃗
(

x
y

)]
=

⎡

⎣
− sinx 0
2xy x2 + 2y

2x cos(x2 − y) − cos(x2 − y)

⎤

⎦

b.
[
Df⃗
(

x
y

)]
=

⎡

⎣
x√

x2+y2

y√
x2+y2

y x
2y sinxy cos xy 2x sin xy cos xy

⎤

⎦ .

1.7.8 a. D1f1 = 2x cos(x2 + y), D2f1 = cos(x2 + y), D2f2 = xexy

b. 3× 2.

1.7.9 a. The derivative is an m× n matrix
b. a 1× 3 matrix (line matrix)
c. a 4× 1 matrix (vector 4 high)


