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and set A = kC + 1. Then if x ≤ −A we have

p(x) = xk + ak−1x
k−1 + · · · + a1x + a0

≤ (−A)k + CAk−1 + · · · + C ≤ −Ak + kCAk−1

= Ak−1(kC −A) = −Ak−1 ≤ 0.

Similarly, if x ≥ A we have

p(x) = xk + ak−1x
k−1 + · · · + a1x + a0

≥ (A)k − CAk−1 − · · ·− C ≥ Ak − kCAk−1

= Ak−1(A− kC) = Ak−1 ≥ 0.

Since p : [−A, A] → R is a continuous function (corollary 1.5.30) and we
have p(−A) ≤ 0 and p(A) ≥ 0, then by the intermediate value theorem
there exists x0 ∈ [−A, A] such that p(x0) = 0.

1.7.1 a. f(a) = 0, f ′(a) = cos(a) = 1 so the tangent is g(x) = x.
b. f(a) = 1

2 , f ′(a) = − sin(a) = −
√

3
2 so the tangent is

g(x) = −
√

3
2

(x− π

3
) +

1
2
.

c. f(a) = 1, f ′(a) = − sin(a) = 0 so the tangent is g(x) = 1.
d. f(a) = 2, f ′(a) = − 1

a2 = −4 so the tangent is

g(x) = −4(x− 1/2) + 2 = −4x + 4.

1.7.2 We need to find a such that if the graph of g is the tangent at a,
then g(0) = 0. Since the tangent is

g(x) = e−a − e−a(x− a),

we have

g(0) = e−a + ae−a = 0,

so

e−a(1 + a) = 0, which gives a = −1.

1.7.3 a. f ′(x) =
(
3 sin2(x2 + cos x)

)(
cos(x2 + cos x)

)(
2x− sinx

)

b. f ′(x) =
(
2 cos((x + sin x)2)

)(
− sin((x + sinx)2)

)(
2(x + sin x)

)(
1 + cos x

)

c. f ′(x) =
(
(cos x)5 + sinx

)(
4(cos x)3

)
(− sin(x)) = (cosx)5 − 4(sinx)2(cos x)3

d. f ′(x) = 3(x + sin4 x)2(1 + 4 sin3 x cos x)

e. f ′(x) =
sin3 x(cos x2 ∗ 2x)

2 + sin(x)
+

sinx2(3 sin2 x cos x)
2 + sin(x)

− (sinx2 sin3 x)(cos x)
(
2 + sin(x)

)2

f. f ′(x) = cos
(

x3

sinx2

)(
3x2

sinx2
− (x3)(cos x2 ∗ 2x)

(sinx2)2

)
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1.7.4 a. If f(x) = |x|3/2, then

f ′(0) = lim
h→0

|h|3/2

h
= lim

h→0
|h|1/2 = 0,

so the derivative does exist. But

f(0 + h)− f(0)− hf ′(0) = |h|3/2

is larger than h2, since the limit

lim
h→0

|h|3/2

h2
= lim

h→0
|h|−1/2

is infinite.
b. If f(x) = x ln |x|, then the limit

f ′(0) = lim
h→0

h ln |h|
h

= lim
h→0

ln |h|,

is infinite, and the derivative does not exist.
c. If f(x) = x/ ln |x|, then

f ′(0) = lim
h→0

h

h ln |h| = lim
h→0

1
ln |h| = 0,

so the derivative does exist. But

f(0 + h)− f(0)− hf ′(0) =
h

ln |h|

is larger than h2, since the limit

lim
h→0

h

h2 ln |h| = lim
h→0

1
h ln |h|

is infinite: the denominator tends to 0 as h tends to 0.

1.7.5 a. Compute the partial derivatives:

D1f
(

x
y

)
=

x√
x2 + y

and D2f
(

x
y

)
=

1
2
√

x2 + y
.

This gives

D1f
(

2
1
)

=
2√

22 + 1
=

2√
5

and D2f
(

2
1
)

=
1

2
√

22 + 1
=

1
2
√

5
.

At the point
(

1
−2
)
, we have x2 + y < 0, so the function is not defined

there, and neither are the partial derivatives.

b. Similarly, D1f
(

x
y

)
= 2xy and D2f

(
x
y

)
= x2 + 4y3. This gives

D1f
(

2
1
)

= 4 and D2f
(

2
1
)

= 4 + 4 = 8;

D1f
(

1
−2
)

= −4 and D2f
(

1
−2
)

= 1 + 4 · (−8) = −31.



48 Solutions for Chapter 1

c. Compute

D1f
(

x
y

)
= −y sin xy

D2f
(

x
y

)
= −x sinxy + cos y − y sin y.

This gives

D1f
(

2
1
)

= − sin 2 and D2f
(

2
1
)

= −2 sin 2 + cos 1− sin 1

D1f
(

1
−2
)

= −2 sin 2 and D2f
(

1
−2
)

= sin 2 + cos 2− 2 sin 2 = cos 2− sin 2

d. Since

D1f
(

x
y

)
=

xy2 + 2y4

2(x + y2)3/2
and D2f

(
x
y

)
=

2x2y + xy3

(x + y2)3/2
,

we have

D1f
(

2
1
)

=
4

2
√

27
and D2f

(
2
1
)

=
10√
27

;

D1f
(

1
−2
)

=
36

10
√

5
and D2f

(
1
−2
)

= − 12
5
√

5
.

1.7.6 a. We have

∂ f⃗
∂x

(
x
y

)
=

⎡

⎣
− sinx
2xy

2x cos(x2 − y)

⎤

⎦ and
∂ f⃗
∂y

(
x
y

)
=

⎡

⎣
0

x2 + 2y
− cos(x2 − y)

⎤

⎦ .

b. Similarly,

∂ f⃗
∂x

(
x
y

)
=

⎡

⎣
x√

x2+y2

y
2y sin xy cos xy

⎤

⎦ and
∂ f⃗
∂y

(
x
y

)
=

⎡

⎣
y√

x2+y2

x
2x sin xy cos xy

⎤

⎦ .

1.7.7 Just pile up the partial derivative vectors side by side:

a.
[
Df⃗
(

x
y

)]
=

⎡

⎣
− sinx 0
2xy x2 + 2y

2x cos(x2 − y) − cos(x2 − y)

⎤

⎦

b.
[
Df⃗
(

x
y

)]
=

⎡

⎣
x√

x2+y2

y√
x2+y2

y x
2y sinxy cos xy 2x sin xy cos xy

⎤

⎦ .

1.7.8 a. D1f1 = 2x cos(x2 + y), D2f1 = cos(x2 + y), D2f2 = xexy

b. 3× 2.

1.7.9 a. The derivative is an m× n matrix
b. a 1× 3 matrix (line matrix)
c. a 4× 1 matrix (vector 4 high)
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1.7.10 a. Since f is linear, f(a + v⃗) = f(a) + f(v). But since f is linear,
f(v) = [Df(a)]v⃗:

lim
h⃗→0

1
|h⃗|
(
f(a + h⃗)− f(a)− f(h⃗)

)
= 0, so [Df(a)]h⃗ = f(h⃗).

b. The claim that [Df(a)]v⃗ = f(a + v⃗)− f(a) contradicts the definition
of derivative:

[Df(a)]v⃗ = lim
v⃗→0

f(a + v⃗)− f(a)
|v⃗| .

1.7.11
a.
[
y cos(xy), x cos(xy)

]
b.
[
2xex2+y3

, 3y2ex2+y3]

c.
[

y x
1 1

]
d.
[

cos θ −r sin θ
sin θ r cos θ

]

1.7.12

1.7.13 For the first part, |x| and mx are continuous functions, hence so is
f(0 + h)− f(0)−mh = |h|−mh.

For the second, we have

|h|−mh

h
=
−h−mh

h
= −1−m when h < 0

|h|−mh

h
=

h−mh

h
= 1−m when h > 0.

The difference between these values is always 2, and cannot be made small
by taking h small.

1.7.14 Since g is differentiable at a,

lim
h⃗→0

g(a + h⃗)− g(a)− [Dg(a)]h⃗
|h⃗|

= 0.

This means that for every ϵ > 0, there exists δ such that if 0 < |h⃗| < δ,
then

∣∣∣∣∣
g(a + h⃗)− g(a)− [Dg(a)]h⃗

|h⃗|

∣∣∣∣∣ ≤ ϵ,

The triangle inequality (first inequality below) and proposition 1.4.11 (sec-
ond inequality) then give
∣∣∣∣∣
g(a + h⃗)− g(a)

|h⃗|

∣∣∣∣∣ ≤

∣∣∣∣∣[Dg(a)]
h⃗
|h⃗|

∣∣∣∣∣+ ϵ ≤
∣∣[Dg(a)]

∣∣
∣∣∣∣∣
h⃗
|h⃗|

∣∣∣∣∣+ ϵ =
∣∣[Dg(a)]

∣∣+ ϵ.
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1.7.15 a. There exists a linear transformation [DF (A)] such that
Solution 1.7.15, part a: The ab-

solute value in the numerator is
optional (but not in the denomi-
nator: you cannot divide by ma-
trices).

Since H is an n×m matrix, the
[0] in limH→[0] is the n×m matrix
with all entries 0.

lim
H→[0]

∣∣F (A + H)− F (A)− [DF (A)]H
∣∣

|H| = 0.

b. The derivative is [DF (A)]H = AH⊤+HA⊤. We found this by looking
for linear terms in H of the difference

F (A + H)− F (A) = (A + H)(A + H)⊤ −AA⊤

= (A + H)(A⊤ + H⊤)−AA⊤

= AH⊤ + HA⊤ + HH⊤;

see remark 1.7.6. The linear terms AH⊤+HA⊤ are the derivative. Indeed,

lim
H→[0]

|(A + H)(A + H)⊤ −AA⊤ −AH⊤ −HA⊤|
|H|

= lim
H→[0]

|HH⊤|
|H| ≤ lim

H→[0]

|H| |H⊤|
|H| = lim

H→[0]
|H| = 0.

1.7.16 a. As a mapping R4 → R4, the mapping S is given by

S

⎛

⎜⎝

a
b
c
d

⎞

⎟⎠ =

⎛

⎜⎝

a2 + bc
ab + bd
ac + cd
bc + d2

⎞

⎟⎠ .

b. The derivative of S is given by the Jacobian matrix
⎡

⎢⎣DS

⎛

⎜⎝

a
b
c
d

⎞

⎟⎠

⎤

⎥⎦ =

⎡

⎢⎣

2a c b 0
b a + d 0 b
c 0 a + d c
0 c b 2d

⎤

⎥⎦ .

c. Let B =
[

x1 x2

x3 x4

]
. Then

[
a b
c d

] [
x1 x2

x3 x4

]
+
[

x1 x2

x3 x4

] [
a b
c d

]

=
[

ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4

]
+
[

ax1 + cx2 bx1 + dx2

ax3 + cx4 bx3 + dx4

]

=
[

2ax1 + cx2 + bx3 bx1 + (a + d)x2 + bx4

cx1 + (a + d)x3 + cx4 cx2 + bx3 + 2dx4

]
.

It is indeed true that
⎡

⎢⎣

2ax1 + cx2 + bx3

bx1 + (a + d)x2 + bx4

cx1 + (a + d)x3 + cx4

cx2 + bx3 + 2dx4

⎤

⎥⎦ =

⎡

⎢⎣

2a c b 0
b a + d 0 b
c 0 a + d c
0 c b 2d

⎤

⎥⎦

⎡

⎢⎣

x1

x2

x3

x4

⎤

⎥⎦ .
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d. First compute the square of a 3× 3 matrix A:
⎡

⎣
a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦
2

=

⎡

⎣
a2
1 + b1a2 + c1a3 a1b1 + b1b2 + c1b3 a1c1 + b1c2 + c1c3

a2a1 + b2a2 + c2a3 a2b1 + b2
2 + c2b3 a2c1 + b2c2 + c2c3

a3a1 + b3a2 + c3a3 a3b1 + b3b2 + c3b3 a3c1 + b3c2 + c2
3

⎤

⎦ .

This can be thought of as the mapping

S :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

c1

a2

b2

c2

a3

b3

c3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
1 + b1a2 + c1a3

a1b1 + b1b2 + c1b3

a1c1 + b1c2 + c1c3

a2a1 + b2a2 + c2a3

a2b1 + b2
2 + c2b3

a2c1 + b2c2 + c2c3

a3a1 + b3a2 + c3a3

a3b1 + b3b2 + c3b3

a3c1 + b3c2 + c2
3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Jacobian matrix

[DS(A)] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a1 a2 a3 b1 0 0 c1 0 0
b1 a1 + b2 b3 0 b1 0 0 c1 0
c1 c2 a1 + c3 0 0 b1 0 0 c1

a2 0 0 a1 + b2 a2 a3 c2 0 0
0 a2 0 b1 2b2 b3 0 c2 0
0 0 a2 c1 c2 b2 + c3 0 0 c2

a3 0 0 b3 0 0 a1 + c3 a2 a3

0 a3 0 0 b3 0 b1 b2 + c3 b3

0 0 a3 0 0 b3 c1 c2 2c3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now compute XA + AX:

⎡

⎣
a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦

⎡

⎣
x1 x2 x3

x4 x5 x6

x7 x8 x9

⎤

⎦+

⎡

⎣
x1 x2 x3

x4 x5 x6

x7 x8 x9

⎤

⎦

⎡

⎣
a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤

⎦ =

⎡

⎣
a1x1+a2x2+a3x3+a1x1+b1x4+c1x7 b1x1+b2x2+b3x3+a1x2+b1x5+c1x8 c1x1+c2x2+c3x3+a1x3+b1x6+c1x9

a1x4+a2x5+a3x6+a2x1+b2x4+c2x7 b1x4+b2x5+b3x6+a2x2+b2x5+c2x8 c1x4+c2x5+c3x6+a2x3+b2x6+c2x9

a1x7+a2x8+a3x9+a3x1+b3x4+c3x7 b1x7+b2x8+b3x9+a3x2+b3x5+c3x8 c1x7+c2x8+c3x9+a3x3+b3x6+c3x9

⎤

⎦.

Indeed, this is the same as [DS(A)]x.
Solution 1.7.17: This is sort of

a miracle; the expressions should
not be equal, they should differ by
terms in ϵ2. The reason why they
are exactly equal here is that

[
0 0
ϵ 0

]2
=

[
0 0
0 0

]
.

1.7.17 The derivative of the squaring function is given by

[DS(A)]H = AH + HA;

substituting A =
[

1 1
0 1

]
and H =

[
0 0
ϵ 0

]
gives

[
1 1
0 1

] [
0 0
ϵ 0

]
+
[

0 0
ϵ 0

] [
1 1
0 1

]
=
[
ϵ 0
ϵ 0

]
+
[

0 0
ϵ ϵ

]
=
[
ϵ 0
2ϵ ϵ

]
.

Computing (A + H)2 −A2 gives the same result;

(A + H)2 −A2 =
[

1 + ϵ 2
2ϵ 1 + ϵ

]
−
[

1 2
0 1

]
=
[
ϵ 0
2ϵ ϵ

]
.
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1.7.18 In the case of 2× 2 matrices we have

S(A) :
[

a b
c d

]
→
[

a2 + bc b(a + d)
c(a + d) bc + d2

]
.

Considering the elements of a 2× 2 matrix to form a vector in R4 (ordered
a, b, c, d) we see that the Jacobian of S is:

⎡

⎢⎣

2a c b 0
b a + d 0 b
c 0 a + d c
0 c b 2d

⎤

⎥⎦

If H is a matrix whose entries are 0 except for the ith one which is h (using

the above enumeration; e.g., if i = 3 we have
[

0 0
h 0

]
), then AH + HA is

the matrix equal to h times the ith column of the Jacobian.

1.7.19 Since limh⃗→0
|h⃗|h⃗
|h⃗|

= 0, the derivative exists at the origin and is the
0 linear transformation, represented by the n× n matrix with all entries 0.

1.7.20 The derivative is

1
(ad− bc)2

⎡

⎢⎣

+d2 −cd −db +bc
−bd +ad +b2 −ab
−dc +c2 +ad −ac
bc −ac −ab a2

⎤

⎥⎦ .

This is obtained first by computing the inverse of A:
[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Then one computes

− 1
(ad− bc)2

[
d −b
−c a

] [
x1 x2

x3 x4

] [
d −b
−c a

]
,

computing the matrix multiplication part as follows:

[
x1 x2

x3 x4

] [
d −b
−c a

]

[
d −b
−c a

] [
dx1 − bx3 dx2 − bx4

−cx1 + ax3 −cx2 + ax4

] [
d2x1 − dbx3 − cdx2 + bcx4 −bdx1 + b2x3 + adx1 − abx4

−dcx1 + adx3 + c2x2 − acx4 bcx−−1− abx3 − acd2 + a2x4

]
.

1.7.21 We will work directly from the definition of the derivative:

det(I + H)− det(I)−(h1,1 + h2,2)

= (1 + h1,1)(1 + h2,2)− h1,2h2,1− 1− (h1,1 + h2,2)

= h1,1h2,2 − h1,2h2,1.

Each hi,j satisfies |hi,j | ≤ |H|, so we have

|det(I + H)− det(I)− (h1,1 + h2,2)|
|H| ≤ |h1,1h2,2 − h1,2h2,1|

|H| ≤ 2|H|2

|H| = 2|H|.
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Thus

lim
H→0

| det(I + H)− det(I)− (h1,1 + h2,2)|
|H| ≤ lim

H→0
2|H| = 0.

1.7.22

1.8.1 Three make sense:

c. g ◦ f : R2 → R2; the derivative is a 2× 2 matrix

d. f ◦ g : R3 → R3; the derivative is a 3× 3 matrix

e. f ◦ f : R2 → R; the derivative is a 1× 2 matrix

1.8.2 a. The derivative of f at

⎛

⎝
a
b
c

⎞

⎠ is [2a 2b 4c]; the derivative [Dg] at

f

⎛

⎝
a
b
c

⎞

⎠ = a2 + b2 + 2c2 is

⎡

⎣
1

2(a2 + b2 + 2c2)
3(a2 + b2 + 2c2)2

⎤

⎦, so

⎡

⎣D(g ◦ f)

⎛

⎝
a
b
c

⎞

⎠

⎤

⎦ =

⎡

⎣
1

2(a2 + b2 + 2c2)
3(a2 + b2 + 2c2)2

⎤

⎦ [2a , 2b , 4c]

=

⎡

⎣
2a 2b 4c

4a(a2 + b2 + 2c2) 4b(a2 + b2 + 2c2) 8c(a2 + b2 + 2c2)
6a(a2 + b2 + 2c2)2 6b(a2 + b2 + 2c2)2 12c(a2 + b2 + 2c2)2

⎤

⎦ .

b. The derivative of f at

⎛

⎝
x
y
z

⎞

⎠ is
[

2x 0 1
0 z y

]
, the derivative of g at

[
a
b

]
is [2a 2b], and the derivative of g at f

⎛

⎝
x
y
z

⎞

⎠ is [2x2 + 2z 2yz], so

the derivative of g ◦ f at

⎛

⎝
x
y
z

⎞

⎠ is

[2x2 + 2z 2yz]
[

2x 0 1
0 z y

]
= [4x3 + 4xz 2yz2 2x2 + 2z + 2y2z].

1.8.3 Yes: We have a composition of sine, the exponential function, and
the function

(
x
y

)
)→ xy, all of which are differentiable everywhere.

1.8.4 a. The following compositions exist:

(i) f ◦g : R2 → R3; (ii) f◦g : R2 → R; (iii) f ◦f : R3 → R3; (iv) f◦f : R→ R.

(One could make more by using three functions; for example, f ◦ f ◦ g :
R2 → R.)
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b. We have

(i) (f ◦g)
(

a
b

)
= f(2a+b2) =

⎛

⎝
2a + b2

4a + 2b2

(2a + b2)2

⎞

⎠ (ii) (f ◦g)
(

x
y

)
= f

⎛

⎝
cos x
x + y
sin y

⎞

⎠ = cos2 x+(x+y)2.

(iii) (f ◦ f)

⎛

⎝
x
y
z

⎞

⎠ = f(x2 + y2) =

⎛

⎝
x2 + y2

2(x2 + y2)
(x2 + y2)2

⎞

⎠ (iv) (f ◦ f)(t) = f

⎛

⎝
t
2t
t2

⎞

⎠ = t2 + 4t2 = 5t2.

c.

(i) Computing the derivative directly from (f ◦ g)
(

a
b

)
=

⎛

⎝
2a + b2

4a + 2b2

(2a + b2)2

⎞

⎠

gives
[
D(f ◦ g)

(
a
b

)]
=

⎡

⎣
2 2b
4 4b

8a + 4b2 8ab + 4b3

⎤

⎦; since [Df(t)] =

⎡

⎣
1
2
2t

⎤

⎦ and

[
Dg
(

a
b

)]
= [2 2b], the chain rule gives

[
Df
(
g
(

a
b

))][
Dg
(

a
b

)]
=

⎡

⎣
1
2

4a + 2b2

⎤

⎦ [2 2b] =

⎡

⎣
2 2b
4 4b

8a + 4b2 8ab + 4b3

⎤

⎦ .

(ii) Computing the derivative directly from

(f ◦ g)
(

x
y

)
= cos2 x + (x + y)2 = cos2 x + x2 + 2xy + y2

gives
[
D(f ◦ g)

(
x
y

)]
=
[
−2 cos x sinx + 2x + 2y

2x + 2y

]
; since

⎡

⎣Df

(x
y
z

)⎤

⎦ = [2x 2y 0],

[
Df

(
g
(

x
y

))]
=

⎡

⎣Df

( cos x
x + y
sin y

)⎤

⎦ = [2 cos x 2x + 2y 0],

[
Dg
(

x
y

)]
=

⎡

⎣
− sin x 0

1 1
0 cos y

⎤

⎦ ,

the chain rule gives

[2 cos x 2x + 2y 0]

⎡

⎣
− sinx 0

1 1
0 cos y

⎤

⎦ =
[
−2 cos x sinx + 2x + 2y

2x + 2y

]
.
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(iii) Computing the derivative from (f ◦f)

⎛

⎝
x
y
z

⎞

⎠ =

⎛

⎝
x2 + y2

2(x2 + y2)
(x2 + y2)2

⎞

⎠ gives

⎡

⎣D(f ◦ f)

(x
y
z

)⎤

⎦ =

⎡

⎣
2x 2y 0
4x 4y 0

4x3 + 4xy2 4x2y + 4y3 0

⎤

⎦; the chain rule gives

⎡

⎣Df

(
f

⎛

⎝
x
y
z

⎞

⎠
)⎤

⎦

⎡

⎣Df

(x
y
z

)⎤

⎦ =

⎡

⎣
1
2

2x2 + 2y2

⎤

⎦ [2x 2y 0]

=

⎡

⎣
2x 2y 0
4x 4y 0

4x3 + 4xy2 4x2y + 4y3 0

⎤

⎦ .

(iv) Computing the derivative directly from (f ◦ f)(t) = t2 + 4t2 = 5t2

gives [D((f ◦ f))(t)] = 10t; the chain rule gives

[2t 4t 0]

⎡

⎣
1
2
2t

⎤

⎦ = 2t + 8t = 10t.

1.8.5 One must also show that fg is differentiable, working from the defi-
nition of the derivative.

1.8.6 a. We need to prove that

lim
h⃗→0

∣∣∣f(a+h⃗)·g(a+h⃗)−f(a)·g(a)−f(a)·
(
[Dg(a)]h⃗

)
−
(
[Df(a)]h⃗

)
·g(a)

∣∣∣

|h⃗|
= 0.

Since the term under the limit can be written
(
f(a+h⃗)−f(a)

)
· g(a+h⃗)− g(a)

|h⃗|
+ f(a) ·

(
g(a + h⃗)− g(a)− [Dg(a)]h⃗

|h⃗|

)

+

(
f(a + h⃗)− f(a)− [Df(a)]h⃗

|h⃗|

)
· g(a),

it is enough to prove that the three limits

lim
h⃗→0

∣∣∣f(a + h⃗)− f(a)
∣∣∣
|g(a + h⃗)− g(a)|

|h⃗|

lim
h⃗→0

|f(a)|

∣∣∣∣∣
g(a + h⃗)− g(a)− [Dg(a)]h⃗

|h⃗|

∣∣∣∣∣

lim
h⃗→0

∣∣∣∣∣
f(a + h⃗)− f(a)− [Df(a)]h⃗

|h⃗|

∣∣∣∣∣ |g(a)|

all vanish.
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The first vanishes because

|g(a + h⃗)− g(a)|
|h⃗|

is bounded when h⃗→ 0, and the factor
∣∣∣f(a + h⃗)− f(a)

∣∣∣ tends to 0. The
second vanishes because

∣∣∣∣∣
g(a + h⃗)− g(a)− [Dg(a)]h⃗

|h⃗|

∣∣∣∣∣

tends to 0 when h⃗→ 0, and the factor f(a)| is constant. The third vanishes
because

∣∣∣∣∣
f(a + h⃗)− f(a)− [Df(a)]h⃗

|h⃗|

∣∣∣∣∣

tends to 0 as h⃗→ 0, and the factor |g(a)| is constant.
b. The derivative is given by the formula

[D(⃗f × g⃗)(a)]h⃗ =
((

[Df⃗(a)]h⃗
)
× g⃗(a)

)
+
(
f⃗(a)×

(
[Dg⃗(a)]h⃗

))
.

The proof that this is correct is again almost identical to part a or b.
We need to prove that

lim
h⃗→0

∣∣∣
(
f⃗(a + h⃗)× g⃗(a + (h⃗)

)
−
(
f⃗(a)× g⃗(a)

)
−
(
f⃗(a)×

(
[Dg⃗(a)]h⃗

))
−
((

[Df⃗(a)]h⃗
)
× g⃗(a)

)∣∣∣

|h⃗|
= 0.

The term under the limit can be written as the sum of three cross products:
(
f⃗(a + h⃗)− f⃗(a)

)
× g⃗(a + h⃗)− g⃗(a)

|h⃗|
+ f⃗(a)×

(
g⃗(a + h⃗)− g⃗(a)− [Dg⃗(a)]h⃗

|h⃗|

)

+

(
f⃗(a + h⃗)− f⃗(a)− [Df⃗(a)]h⃗

|h⃗|

)
× g⃗(a),

and, since the area of a parallelogram is at most the product of the lengths
of the sides, we have

|⃗f(x)× g⃗(x)| ≤ |⃗f(x)| |g⃗(x)|.

Thus it is enough to prove that the three limits

lim
h⃗→0

∣∣∣⃗f(a + h⃗)− f⃗(a)
∣∣∣
|g⃗(a + h⃗)− g⃗(a)|

|h⃗|

lim
h⃗→0

|⃗f(a)|

∣∣∣∣∣
g⃗(a + h⃗)− g⃗(a)− [Dg⃗(a)]h⃗

|h⃗|

∣∣∣∣∣

lim
h⃗→0

∣∣∣∣∣
f⃗(ka + h⃗)− f⃗(a)− [Df⃗(a)]h⃗

|h⃗|

∣∣∣∣∣ |g⃗(a)|

all vanish, which again happens for the same reasons as in part a.
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1.8.7 Since [Df(x)] = [x2 x1 + x3 x2 + x4 · · · xn−2 + xn xn−1 ], we
have

[D
(
f(γ(t)

)
] = [ t2 t + t3 t2 + t4 · · · tn−2 + tn tn−1 ]. In addition,

[Dγ(t)] =

⎡

⎢⎢⎣

1
2t
...

ntn−1

⎤

⎥⎥⎦. So the derivative of the function t→ f(γ(t)) is

[D(f ◦ γ)(t)]︸ ︷︷ ︸
deriv. of comp. at t

= [Df(γ(t))]︸ ︷︷ ︸
deriv. of f

at γ(t)

[Dγ(t)]︸ ︷︷ ︸
deriv. of γat t

= t2 +

(
n−1∑

i=2

iti−1(ti−1 + ti+1)

)
+ nt2(n−1)

1.8.8 True. If there were such a mapping g, then
[
Df
(

0
0
)][

Dg
(

1
1
)]

=
[
Df ◦ g

(
1
1
)]

=
[

0 1
1 0

]
.

The first equality is the chain rule, the second comes from the fact that(
x
y

)
)→
(

y
x

)
is linear, so its derivative is itself.

So let
[
Dg
(

1
1
)]

=
[

a b
c d

]
; our equation above says

Solution 1.8.9: This isn’t really
a good problem to test knowledge
of the chain rule, because it is eas-
iest to solve it without ever invok-
ing the chain rule (at least in sev-
eral variables).

[
1 1
1 1

] [
a b
c d

]
=
[

a + c b + d
a + c b + d

]
=
[

0 1
1 0

]
.

This equation has no solutions, since a+ c must simultaneously be 1 and 0.

1.8.9 Clearly

D1f
(

x
y

)
= 2xyϕ′(x2−y2); D2f

(
x
y

)
= −2y2ϕ′(x2−y2)+ϕ(x2−y2).

Thus
1
x

D1f
(

x
y

)
+

1
y
D2f

(
x
y

)
= 2yϕ′(x2 − y2)− 2yϕ′(x2 − y2) +

1
y
ϕ(x2 − y2)

=
1
y2

f
(

x
y

)
.

To use the chain rule, write f = k ◦ h ◦ g, where

g
(

x
y

)
=
(

x2 − y2

y

)
, h

(
u
v

)
=
(
ϕ(u)

v

)
, k

(
s
t

)
= st.

This leads to
[
Df
(

x
y

)]
= [t, s]

[
ϕ′(u) 0

0 1

] [
2x −2y
0 1

]
= [2xtϕ′(u), −2ytϕ′(u) + s].

Insert the values of the variables; you find

D1f
(

x
y

)
= 2xy ϕ′(x2−y2) and D2f

(
x
y

)
= −2y2ϕ′(x2−y2)+ϕ(x2−y2).

Now continue as above.
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1.8.10 In the first printing, the problem was misstated. The problem
should say: “If f : R2 → R can be written . . . ” (it should not be “If
f : R2 → R2 can be written . . . ”). The function f must be scalar-valued,
since ϕ is.

(a) Let f
(

x
y

)
= ϕ(x2 + y2). By the chain rule, we have

[
Df
(

x
y

)]
=
[
D1f

(
x
y

)
, D2f

(
x
y

)]
= [Dϕ(x2 + y2)][2x, 2y].

So

D1f
(

x
y

)
= 2x[Dϕ(x2 + y2)] and D2f

(
x
y

)
= 2y[Dϕ(x2 + y2)].

The result follows immediately.
(b) Let f satisfy xD2f − yD1f = 0, and let us show that it is constant

on circles centered at the origin. This is the same thing as showing that for
the function

g
(

r
θ

)
def= f

(
r cos θ
r sin θ

)
,

we have

Dθg = 0.

This derivative can be computed by the chain rule, to find

Dθg
(

r
θ

)
=
(
D1f

(
r cos θ
r sin θ

))
(−r sin θ) +

(
D2f

(
r cos θ
r sin θ

))
(r cos θ)

= xD2f
(

r cos θ
r sin θ

)
− yD1f

(
r cos θ
r sin θ

)
= 0.

So f
(

x
y

)
= f

(√
x2 + y2

0
)
, and we can take ϕ(r) = f

(
r
0
)
.

1.8.11 Using the chain rule in one variable,

D1f = ϕ′
(

x + y

x− y

)(
1(x− y)− 1(x + y)

(x− y)2

)
= ϕ′

(
x + y

x− y

)(
−2y

(x− y)2

)

and

D2f = ϕ′
(

x + y

x− y

)(
1(x− y)− (−1)(x + y)

(x− y)2

)
= ϕ′

(
x + y

x− y

)(
2x

(x− y)2

)

so

xD1f + yD2f = ϕ′
(

x + y

x− y

)(
−2xy

(x− y)2

)
+ ϕ′

(
x + y

x− y

)(
2yx

(x− y)2

)
= 0

1.8.12 a. True: the chain rule tells us that

[D(g ◦ f)(0)]h⃗ = [D
(
g(f(0)

)
][Df(0)]h⃗.

If there exists a differentiable function g such that (g ◦ f)(x) = x, then
[D(g ◦ f)(0)] = I which would mean that

[D(g ◦ f)(0)]h⃗ = [D
(
g(f(0)

)
][Df(0)]h⃗ = h⃗,


