and set A = kC + 1. Then if $x \leq -A$ we have

$$p(x) = x^{k} + a_{k-1}x^{k-1} + \dots + a_{1}x + a_{0}$$

$$\leq (-A)^{k} + CA^{k-1} + \dots + C \leq -A^{k} + kCA^{k-1}$$

$$= A^{k-1}(kC - A) = -A^{k-1} \leq 0.$$

Similarly, if $x \ge A$ we have $p(x) = x^k + a_{k-1} x^{k-1}$

$$p(x) = x^{k} + a_{k-1}x^{k-1} + \dots + a_{1}x + a_{0}$$

$$\geq (A)^{k} - CA^{k-1} - \dots - C \geq A^{k} - kCA^{k-1}$$

$$= A^{k-1}(A - kC) = A^{k-1} \geq 0.$$

Since $p : [-A, A] \to \mathbb{R}$ is a continuous function (corollary 1.5.30) and we have $p(-A) \leq 0$ and $p(A) \geq 0$, then by the intermediate value theorem there exists $x_0 \in [-A, A]$ such that $p(x_0) = 0$.

1.7.1 a. f(a) = 0, $f'(a) = \cos(a) = 1$ so the tangent is g(x) = x. b. $f(a) = \frac{1}{2}$, $f'(a) = -\sin(a) = -\frac{\sqrt{3}}{2}$ so the tangent is

$$g(x) = -\frac{\sqrt{3}}{2}(x - \frac{\pi}{3}) + \frac{1}{2}.$$

c. f(a) = 1, f'(a) = -sin(a) = 0 so the tangent is g(x) = 1.
d. f(a) = 2, f'(a) = -¹/_{a²} = -4 so the tangent is g(x) = -4(x - 1/2) + 2 = -4x + 4.

1.7.2 We need to find a such that if the graph of g is the tangent at a, then g(0) = 0. Since the tangent is

$$g(x) = e^{-a} - e^{-a}(x - a),$$

we have

$$g(0) = e^{-a} + ae^{-a} = 0,$$

 \mathbf{SO}

$$e^{-a}(1+a) = 0$$
, which gives $a = -1$.

$$1.7.3 \quad \text{a.} \quad f'(x) = \left(3\sin^2(x^2 + \cos x)\right)\left(\cos(x^2 + \cos x)\right)\left(2x - \sin x\right)$$

b.
$$f'(x) = \left(2\cos((x + \sin x)^2)\right)\left(-\sin((x + \sin x)^2)\right)\left(2(x + \sin x)\right)\left(1 + \cos x\right)$$

c.
$$f'(x) = \left((\cos x)^5 + \sin x\right)\left(4(\cos x)^3\right)(-\sin(x)) = (\cos x)^5 - 4(\sin x)^2(\cos x)^3$$

d.
$$f'(x) = 3(x + \sin^4 x)^2(1 + 4\sin^3 x \cos x)$$

e.
$$f'(x) = \frac{\sin^3 x(\cos x^2 * 2x)}{2 + \sin(x)} + \frac{\sin x^2(3\sin^2 x \cos x)}{2 + \sin(x)} - \frac{(\sin x^2 \sin^3 x)(\cos x)}{(2 + \sin(x))^2}$$

f.
$$f'(x) = \cos\left(\frac{x^3}{\sin x^2}\right)\left(\frac{3x^2}{\sin x^2} - \frac{(x^3)(\cos x^2 * 2x)}{(\sin x^2)^2}\right)$$

1.7.4 a. If $f(x) = |x|^{3/2}$, then

$$f'(0) = \lim_{h \to 0} \frac{|h|^{3/2}}{h} = \lim_{h \to 0} |h|^{1/2} = 0,$$

so the derivative does exist. But

$$f(0+h) - f(0) - hf'(0) = |h|^{3/2}$$

is larger than h^2 , since the limit

$$\lim_{h \to 0} \frac{|h|^{3/2}}{h^2} = \lim_{h \to 0} |h|^{-1/2}$$

0.10

is infinite.

b. If $f(x) = x \ln |x|$, then the limit

$$f'(0) = \lim_{h \to 0} \frac{h \ln |h|}{h} = \lim_{h \to 0} \ln |h|,$$

is infinite, and the derivative does not exist.

c. If $f(x) = x/\ln|x|$, then

$$f'(0) = \lim_{h \to 0} \frac{h}{h \ln |h|} = \lim_{h \to 0} \frac{1}{\ln |h|} = 0,$$

so the derivative does exist. But

$$f(0+h) - f(0) - hf'(0) = \frac{h}{\ln|h|}$$

is larger than h^2 , since the limit

$$\lim_{h \to 0} \frac{h}{h^2 \ln |h|} = \lim_{h \to 0} \frac{1}{h \ln |h|}$$

is infinite: the denominator tends to 0 as h tends to 0.

1.7.5 a. Compute the partial derivatives:

$$D_1 f\begin{pmatrix} x\\ y \end{pmatrix} = \frac{x}{\sqrt{x^2 + y}}$$
 and $D_2 f\begin{pmatrix} x\\ y \end{pmatrix} = \frac{1}{2\sqrt{x^2 + y}}$

This gives

$$D_1 f\begin{pmatrix} 2\\1 \end{pmatrix} = \frac{2}{\sqrt{2^2 + 1}} = \frac{2}{\sqrt{5}}$$
 and $D_2 f\begin{pmatrix} 2\\1 \end{pmatrix} = \frac{1}{2\sqrt{2^2 + 1}} = \frac{1}{2\sqrt{5}}$

At the point $\begin{pmatrix} 1\\ -2 \end{pmatrix}$, we have $x^2 + y < 0$, so the function is not defined there, and neither are the partial derivatives.

b. Similarly,
$$D_1 f\begin{pmatrix} x\\ y \end{pmatrix} = 2xy$$
 and $D_2 f\begin{pmatrix} x\\ y \end{pmatrix} = x^2 + 4y^3$. This gives
 $D_1 f\begin{pmatrix} 2\\ 1 \end{pmatrix} = 4$ and $D_2 f\begin{pmatrix} 2\\ 1 \end{pmatrix} = 4 + 4 = 8;$
 $D_1 f\begin{pmatrix} -2\\ -2 \end{pmatrix} = -4$ and $D_2 f\begin{pmatrix} -1\\ -2 \end{pmatrix} = 1 + 4 \cdot (-8) = -31.$

- 48 Solutions for Chapter 1
 - c. Compute

$$D_1 f \begin{pmatrix} x \\ y \end{pmatrix} = -y \sin xy$$
$$D_2 f \begin{pmatrix} x \\ y \end{pmatrix} = -x \sin xy + \cos y - y \sin y.$$

This gives

$$D_1 f \begin{pmatrix} 2\\1 \end{pmatrix} = -\sin 2 \quad \text{and} \quad D_2 f \begin{pmatrix} 2\\1 \end{pmatrix} = -2\sin 2 + \cos 1 - \sin 1$$
$$D_1 f \begin{pmatrix} 1\\-2 \end{pmatrix} = -2\sin 2 \quad \text{and} \quad D_2 f \begin{pmatrix} 1\\-2 \end{pmatrix} = \sin 2 + \cos 2 - 2\sin 2 = \cos 2 - \sin 2$$

d. Since

$$D_1 f\begin{pmatrix} x\\ y \end{pmatrix} = \frac{xy^2 + 2y^4}{2(x+y^2)^{3/2}}$$
 and $D_2 f\begin{pmatrix} x\\ y \end{pmatrix} = \frac{2x^2y + xy^3}{(x+y^2)^{3/2}}$,

we have

$$D_1 f\begin{pmatrix} 2\\1 \end{pmatrix} = \frac{4}{2\sqrt{27}}$$
 and $D_2 f\begin{pmatrix} 2\\1 \end{pmatrix} = \frac{10}{\sqrt{27}};$
 $D_1 f\begin{pmatrix} 1\\-2 \end{pmatrix} = \frac{36}{10\sqrt{5}}$ and $D_2 f\begin{pmatrix} 1\\-2 \end{pmatrix} = -\frac{12}{5\sqrt{5}}.$

1.7.6 a. We have

$$\frac{\partial \vec{\mathbf{f}}}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -\sin x \\ 2xy \\ 2x\cos(x^2 - y) \end{bmatrix} \quad \text{and} \quad \frac{\partial \vec{\mathbf{f}}}{\partial y} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 \\ x^2 + 2y \\ -\cos(x^2 - y) \end{bmatrix}.$$

b. Similarly,

$$\frac{\partial \vec{\mathbf{f}}}{\partial x} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} \\ y \\ 2y \sin xy \ \cos xy \end{bmatrix} \quad \text{and} \quad \frac{\partial \vec{\mathbf{f}}}{\partial y} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \frac{y}{\sqrt{x^2 + y^2}} \\ 2x \sin xy \ \cos xy \end{bmatrix}.$$

1.7.7 Just pile up the partial derivative vectors side by side:

a.
$$\left[\mathbf{D}\vec{\mathbf{f}}\begin{pmatrix}x\\y\end{pmatrix}\right] = \begin{bmatrix} -\sin x & 0\\ 2xy & x^2 + 2y\\ 2x\cos(x^2 - y) & -\cos(x^2 - y) \end{bmatrix}$$

b. $\left[\mathbf{D}\vec{\mathbf{f}}\begin{pmatrix}x\\y\end{pmatrix}\right] = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}}\\ y & x\\ 2y\sin xy\,\cos xy & 2x\sin xy\,\cos xy \end{bmatrix}$.

1.7.8 a. $D_1f_1 = 2x\cos(x^2 + y), D_2f_1 = \cos(x^2 + y), D_2f_2 = xe^{xy}$ b. 3×2 .

1.7.9 a. The derivative is an $m \times n$ matrix

- b. a 1×3 matrix (line matrix)
- c. a 4×1 matrix (vector 4 high)

1.7.10 a. Since f is linear, $f(a+\vec{v})=f(a)+f(v).$ But since f is linear, $f(v)=[Df(a)]\vec{v}:$

$$\lim_{\vec{\mathbf{h}}\to 0} \frac{1}{|\vec{\mathbf{h}}|} \left(\mathbf{f}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{f}(\mathbf{a}) - \mathbf{f}(\vec{\mathbf{h}}) \right) = \mathbf{0}, \quad \text{so} \quad [\mathbf{D}\mathbf{f}(\mathbf{a})]\vec{\mathbf{h}} = \mathbf{f}(\vec{\mathbf{h}}).$$

b. The claim that $[\mathbf{D}\mathbf{f}(\mathbf{a})]\vec{\mathbf{v}}=\mathbf{f}(\mathbf{a}+\vec{\mathbf{v}})-\mathbf{f}(\mathbf{a})$ contradicts the definition of derivative:

$$[\mathbf{D}\mathbf{f}(\mathbf{a})]\vec{\mathbf{v}} = \lim_{\vec{\mathbf{v}}\to 0} \frac{\mathbf{f}(\mathbf{a}+\vec{\mathbf{v}}) - \mathbf{f}(\mathbf{a})}{|\vec{\mathbf{v}}|}.$$

1.7.11

a.
$$\begin{bmatrix} y \cos(xy), x \cos(xy) \end{bmatrix}$$
 b. $\begin{bmatrix} 2xe^{x^2+y^3}, 3y^2e^{x^2+y^3} \end{bmatrix}$
c. $\begin{bmatrix} y & x \\ 1 & 1 \end{bmatrix}$ d. $\begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix}$

1.7.12

1.7.13 For the first part, |x| and mx are continuous functions, hence so is f(0+h) - f(0) - mh = |h| - mh.

For the second, we have

$$\frac{|h| - mh}{h} = \frac{-h - mh}{h} = -1 - m \quad \text{when } h < 0$$
$$\frac{|h| - mh}{h} = \frac{h - mh}{h} = 1 - m \quad \text{when } h > 0.$$

The difference between these values is always 2, and cannot be made small by taking h small.

 $1.7.14 \ \, {\rm Since} \ \, {\bf g} \ \, {\rm is \ \, differentiable \ at} \ \, {\bf a},$

$$\lim_{\vec{h}\rightarrow 0}\frac{\mathbf{g}(\mathbf{a}+\vec{h})-\mathbf{g}(\mathbf{a})-[\mathbf{D}\mathbf{g}(\mathbf{a})]\vec{h}}{|\vec{h}|}=0.$$

This means that for every $\epsilon > 0$, there exists δ such that if $0 < |\vec{\mathbf{h}}| < \delta$, then

$$\left|\frac{\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{g}(\mathbf{a}) - [\mathbf{D}\mathbf{g}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right| \leq \epsilon,$$

The triangle inequality (first inequality below) and proposition 1.4.11 (second inequality) then give

$$\left|\frac{\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}})-\mathbf{g}(\mathbf{a})}{|\vec{\mathbf{h}}|}\right| \le \left|[\mathbf{D}\mathbf{g}(\mathbf{a})]\frac{\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right| + \epsilon \le \left|[\mathbf{D}\mathbf{g}(\mathbf{a})]\right| \left|\frac{\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right| + \epsilon = \left|[\mathbf{D}\mathbf{g}(\mathbf{a})]\right| + \epsilon.$$

1.7.15 a. There exists a linear transformation $[\mathbf{D}F(A)]$ such that

$$\lim_{H \to [0]} \frac{|F(A+H) - F(A) - [\mathbf{D}F(A)]H|}{|H|} = 0.$$

b. The derivative is $[\mathbf{D}F(A)]H = AH^{\top} + HA^{\top}$. We found this by looking for linear terms in H of the difference

$$F(A+H) - F(A) = (A+H)(A+H)^{\top} - AA^{\top}$$
$$= (A+H)(A^{\top} + H^{\top}) - AA^{\top}$$
$$= AH^{\top} + HA^{\top} + HH^{\top};$$

see remark 1.7.6. The linear terms $AH^{\top} + HA^{\top}$ are the derivative. Indeed,

$$\lim_{H \to [0]} \frac{|(A+H)(A+H)^{\top} - AA^{\top} - AH^{\top} - HA^{\top}|}{|H|}$$
$$= \lim_{H \to [0]} \frac{|HH^{\top}|}{|H|} \le \lim_{H \to [0]} \frac{|H| |H^{\top}|}{|H|} = \lim_{H \to [0]} |H| = 0.$$

1.7.16 a. As a mapping $\mathbb{R}^4 \to \mathbb{R}^4$, the mapping S is given by

$$S\begin{pmatrix}a\\b\\c\\d\end{pmatrix} = \begin{pmatrix}a^2 + bc\\ab + bd\\ac + cd\\bc + d^2\end{pmatrix}.$$

b. The derivative of S is given by the Jacobian matrix

$$\begin{bmatrix} \mathbf{D}S \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 2a & c & b & 0 \\ b & a+d & 0 & b \\ c & 0 & a+d & c \\ 0 & c & b & 2d \end{bmatrix}.$$

c. Let $B = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$. Then
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} + \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$= \begin{bmatrix} ax_1 + bx_3 & ax_2 + bx_4 \\ cx_1 + dx_3 & cx_2 + dx_4 \end{bmatrix} + \begin{bmatrix} ax_1 + cx_2 & bx_1 + dx_2 \\ ax_3 + cx_4 & bx_3 + dx_4 \end{bmatrix}$$
$$= \begin{bmatrix} 2ax_1 + cx_2 + bx_3 & bx_1 + (a+d)x_2 + bx_4 \\ cx_1 + (a+d)x_3 + cx_4 & cx_2 + bx_3 + 2dx_4 \end{bmatrix}.$$

It is indeed true that

$$\begin{bmatrix} 2ax_1 + cx_2 + bx_3\\ bx_1 + (a+d)x_2 + bx_4\\ cx_1 + (a+d)x_3 + cx_4\\ cx_2 + bx_3 + 2dx_4 \end{bmatrix} = \begin{bmatrix} 2a & c & b & 0\\ b & a+d & 0 & b\\ c & 0 & a+d & c\\ 0 & c & b & 2d \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}.$$

Solution 1.7.15, part a: The absolute value in the numerator is optional (but not in the denominator: you cannot divide by matrices).

Since H is an $n \times m$ matrix, the [0] in $\lim_{H \to [0]}$ is the $n \times m$ matrix with all entries 0.

d. First compute the square of a 3×3 matrix A:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}^2 = \begin{bmatrix} a_1^2 + b_1 a_2 + c_1 a_3 & a_1 b_1 + b_1 b_2 + c_1 b_3 & a_1 c_1 + b_1 c_2 + c_1 c_3 \\ a_2 a_1 + b_2 a_2 + c_2 a_3 & a_2 b_1 + b_2^2 + c_2 b_3 & a_2 c_1 + b_2 c_2 + c_2 c_3 \\ a_3 a_1 + b_3 a_2 + c_3 a_3 & a_3 b_1 + b_3 b_2 + c_3 b_3 & a_3 c_1 + b_3 c_2 + c_3^2 \end{bmatrix}.$$

This can be thought of as the mapping

S

$$\begin{bmatrix} a_1\\b_1\\c_1\\a_2\\b_2\\c_2\\a_3\\b_3\\c_3 \end{bmatrix} \mapsto \begin{bmatrix} a_1^2 + b_1a_2 + c_1a_3\\a_1b_1 + b_1b_2 + c_1b_3\\a_1c_1 + b_1c_2 + c_1c_3\\a_2a_1 + b_2a_2 + c_2a_3\\a_2b_1 + b_2^2 + c_2b_3\\a_2c_1 + b_2c_2 + c_2c_3\\a_3a_1 + b_3a_2 + c_3a_3\\a_3b_1 + b_3b_2 + c_3b_3\\a_3c_1 + b_3c_2 + c_3^2 \end{bmatrix}$$

with Jacobian matrix

$$\left[\mathbf{D}S(A)\right] = \begin{bmatrix} 2a_1 & a_2 & a_3 & b_1 & 0 & 0 & c_1 & 0 & 0 \\ b_1 & a_1 + b_2 & b_3 & 0 & b_1 & 0 & 0 & c_1 & 0 \\ c_1 & c_2 & a_1 + c_3 & 0 & 0 & b_1 & 0 & 0 & c_1 \\ a_2 & 0 & 0 & a_1 + b_2 & a_2 & a_3 & c_2 & 0 & 0 \\ 0 & a_2 & 0 & b_1 & 2b_2 & b_3 & 0 & c_2 & 0 \\ 0 & 0 & a_2 & c_1 & c_2 & b_2 + c_3 & 0 & 0 & c_2 \\ a_3 & 0 & 0 & b_3 & 0 & 0 & a_1 + c_3 & a_2 & a_3 \\ 0 & a_3 & 0 & 0 & b_3 & 0 & b_1 & b_2 + c_3 & b_3 \\ 0 & 0 & a_3 & 0 & 0 & b_3 & c_1 & c_2 & 2c_3 \end{bmatrix}.$$

Now compute XA + AX:

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix} + \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} =$$

 $\begin{bmatrix} a_1x_1 + a_2x_2 + a_3x_3 + a_1x_1 + b_1x_4 + c_1x_7 & b_1x_1 + b_2x_2 + b_3x_3 + a_1x_2 + b_1x_5 + c_1x_8 & c_1x_1 + c_2x_2 + c_3x_3 + a_1x_3 + b_1x_6 + c_1x_9 \\ a_1x_4 + a_2x_5 + a_3x_6 + a_2x_1 + b_2x_4 + c_2x_7 & b_1x_4 + b_2x_5 + b_3x_6 + a_2x_2 + b_2x_5 + c_2x_8 & c_1x_4 + c_2x_5 + c_3x_6 + a_2x_3 + b_2x_6 + c_2x_9 \\ a_1x_7 + a_2x_8 + a_3x_9 + a_3x_1 + b_3x_4 + c_3x_7 & b_1x_7 + b_2x_8 + b_3x_9 + a_3x_2 + b_3x_5 + c_3x_8 & c_1x_7 + c_2x_8 + c_3x_9 + a_3x_3 + b_3x_6 + c_3x_9 \end{bmatrix}.$

Indeed, this is the same as $[\mathbf{D}S(A)]\mathbf{x}$.

1.7.17 The derivative of the squaring function is given by

$$[\mathbf{D}S(A)]H = AH + HA;$$

substituting $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $H = \begin{bmatrix} 0 & 0 \\ \epsilon & 0 \end{bmatrix}$ gives
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ \epsilon & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \epsilon & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \epsilon & 0 \\ \epsilon & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \epsilon & \epsilon \end{bmatrix} = \begin{bmatrix} \epsilon & 0 \\ 2\epsilon & \epsilon \end{bmatrix}$$
Computing $(A + H)^2 - A^2$ gives the same result;
 $(A + H)^2 - A^2 = \begin{bmatrix} 1 + \epsilon & 2 \\ 2\epsilon & 1 + \epsilon \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \epsilon & 0 \\ 2\epsilon & \epsilon \end{bmatrix}.$

Solution 1.7.17: This is sort of a miracle; the expressions should not be equal, they should differ by terms in ϵ^2 . The reason why they are exactly equal here is that

 $\begin{bmatrix} 0 & 0 \\ \epsilon & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$

1.7.18 In the case of 2×2 matrices we have

$$S(A): \begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} a^2 + bc & b(a+d) \\ c(a+d) & bc+d^2 \end{bmatrix}.$$

Considering the elements of a 2×2 matrix to form a vector in \mathbb{R}^4 (ordered a, b, c, d) we see that the Jacobian of S is:

$$\begin{bmatrix} 2a & c & b & 0 \\ b & a+d & 0 & b \\ c & 0 & a+d & c \\ 0 & c & b & 2d \end{bmatrix}$$

If H is a matrix whose entries are 0 except for the i^{th} one which is h (using the above enumeration; e.g., if i = 3 we have $\begin{bmatrix} 0 & 0 \\ h & 0 \end{bmatrix}$), then AH + HA is the matrix equal to h times the *i*th column of the Jacobian.

1.7.19 Since $\lim_{\vec{h}\to 0} \frac{|\vec{h}|\vec{h}|}{|\vec{h}|} = 0$, the derivative exists at the origin and is the 0 linear transformation, represented by the $n \times n$ matrix with all entries 0.

1.7.20 The derivative is

$$\frac{1}{(ad-bc)^2} \begin{bmatrix} +d^2 & -cd & -db & +bc \\ -bd & +ad & +b^2 & -ab \\ -dc & +c^2 & +ad & -ac \\ bc & -ac & -ab & a^2 \end{bmatrix}.$$

This is obtained first by computing the inverse of A:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Then one computes

$$-\frac{1}{(ad-bc)^2} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},$$

computing the matrix multiplication part as follows:

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$\begin{bmatrix} dx_1 - bx_3 & dx_2 - bx_4 \\ -cx_1 + ax_3 & -cx_2 + ax_4 \end{bmatrix} \begin{bmatrix} d^2x_1 - dbx_3 - cdx_2 + bcx_4 & -bdx_1 + b^2x_3 + adx_1 - abx_4 \\ -dcx_1 + adx_3 + c^2x_2 - acx_4 & bcx - 1 - abx_3 - acd_2 + a^2x_4 \end{bmatrix}$$

1.7.21 We will work directly from the definition of the derivative:

$$\begin{aligned} \det(I+H) - \det(I) - (h_{1,1} + h_{2,2}) \\ &= (1+h_{1,1})(1+h_{2,2}) - h_{1,2}h_{2,1} - 1 - (h_{1,1} + h_{2,2}) \\ &= h_{1,1}h_{2,2} - h_{1,2}h_{2,1}. \end{aligned}$$

Each $h_{i,j}$ satisfies $|h_{i,j}| \leq |H|$, so we have

$$\frac{|\det(I+H) - \det(I) - (h_{1,1} + h_{2,2})|}{|H|} \le \frac{|h_{1,1}h_{2,2} - h_{1,2}h_{2,1}|}{|H|} \le \frac{2|H|^2}{|H|} = 2|H|.$$

Thus

$$\lim_{H \to 0} \frac{|\det(I+H) - \det(I) - (h_{1,1} + h_{2,2})|}{|H|} \le \lim_{H \to 0} 2|H| = 0.$$

1.7.22

1.8.1 Three make sense:

c. g ∘ f : ℝ² → ℝ²; the derivative is a 2 × 2 matrix
d. f ∘ g : ℝ³ → ℝ³; the derivative is a 3 × 3 matrix
e. f ∘ f : ℝ² → ℝ; the derivative is a 1 × 2 matrix

$$\begin{aligned} \mathbf{1.8.2} \quad \text{a. The derivative of } f \text{ at } \begin{pmatrix} a \\ b \\ c \end{pmatrix} & \text{is } [2a \ 2b \ 4c]; \text{ the derivative } [\mathbf{Dg}] \text{ at} \\ f \begin{pmatrix} a \\ b \\ c \end{pmatrix} &= a^2 + b^2 + 2c^2 \text{ is } \begin{bmatrix} 1 \\ 2(a^2 + b^2 + 2c^2) \\ 3(a^2 + b^2 + 2c^2)^2 \end{bmatrix}, \text{ so} \\ \\ \begin{bmatrix} \mathbf{D}(\mathbf{g} \circ f) \begin{pmatrix} a \\ b \\ c \end{pmatrix} \end{bmatrix} &= \begin{bmatrix} 1 \\ 2(a^2 + b^2 + 2c^2) \\ 3(a^2 + b^2 + 2c^2)^2 \end{bmatrix} [2a, 2b, 4c] \\ &= \begin{bmatrix} 2a & 2b & 4c \\ 4a(a^2 + b^2 + 2c^2)^2 & 4b(a^2 + b^2 + 2c^2) \\ 6a(a^2 + b^2 + 2c^2)^2 & 6b(a^2 + b^2 + 2c^2)^2 \end{bmatrix} \mathbf{1} 2c(a^2 + b^2 + 2c^2)^2 \end{bmatrix}. \\ &\text{ b. The derivative of } \mathbf{f} \text{ at } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ is } \begin{bmatrix} 2x & 0 & 1 \\ 0 & z & y \end{bmatrix}, \text{ the derivative of } g \text{ at} \\ \begin{bmatrix} a \\ b \end{bmatrix} \text{ is } [2a \ 2b], \text{ and the derivative of } g \text{ at } \mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ is } [2x^2 + 2z \ 2yz], \text{ so} \\ \text{ the derivative of } g \circ \mathbf{f} \text{ at } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ is } \\ [2x^2 + 2z \ 2yz] \begin{bmatrix} 2x & 0 & 1 \\ 0 & z & y \end{bmatrix} = [4x^3 + 4xz \ 2yz^2 \ 2x^2 + 2z + 2y^2z]. \end{aligned}$$

1.8.3 Yes: We have a composition of sine, the exponential function, and the function $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto xy$, all of which are differentiable everywhere.

 ${\bf 1.8.4}$ a. The following compositions exist:

(i) $\mathbf{f} \circ g : \mathbb{R}^2 \to \mathbb{R}^3$; (ii) $f \circ \mathbf{g} : \mathbb{R}^2 \to \mathbb{R}$; (iii) $\mathbf{f} \circ f : \mathbb{R}^3 \to \mathbb{R}^3$; (iv) $f \circ \mathbf{f} : \mathbb{R} \to \mathbb{R}$. (One could make more by using three functions; for example, $f \circ \mathbf{f} \circ g : \mathbb{R}^2 \to \mathbb{R}$.)

b. We have

(i)
$$(\mathbf{f} \circ g) \begin{pmatrix} a \\ b \end{pmatrix} = \mathbf{f}(2a+b^2) = \begin{pmatrix} 2a+b^2 \\ 4a+2b^2 \\ (2a+b^2)^2 \end{pmatrix}$$
 (ii) $(f \circ \mathbf{g}) \begin{pmatrix} x \\ y \end{pmatrix} = f \begin{pmatrix} \cos x \\ x+y \\ \sin y \end{pmatrix} = \cos^2 x + (x+y)^2.$

(iii)
$$(\mathbf{f} \circ f) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{f}(x^2 + y^2) = \begin{pmatrix} x^2 + y^2 \\ 2(x^2 + y^2) \\ (x^2 + y^2)^2 \end{pmatrix}$$
 (iv) $(f \circ \mathbf{f})(t) = f \begin{pmatrix} t \\ 2t \\ t^2 \end{pmatrix} = t^2 + 4t^2 = 5t^2.$

c.
(i) Computing the derivative directly from
$$(\mathbf{f} \circ g) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a+b^2 \\ 4a+2b^2 \\ (2a+b^2)^2 \end{pmatrix}$$

gives $\left[\mathbf{D}(\mathbf{f} \circ g) \begin{pmatrix} a \\ b \end{pmatrix} \right] = \begin{bmatrix} 2 & 2b \\ 4 & 4b \\ 8a+4b^2 & 8ab+4b^3 \end{bmatrix}$; since $\left[\mathbf{D}\mathbf{f}(t) \right] = \begin{bmatrix} 1 \\ 2 \\ 2t \end{bmatrix}$ and $\left[\mathbf{D}g \begin{pmatrix} a \\ b \end{pmatrix} \right] = \begin{bmatrix} 2 & 2b \end{bmatrix}$, the chain rule gives
 $\left[\mathbf{D}\mathbf{f} \left(g \begin{pmatrix} a \\ b \end{pmatrix} \right) \right] \left[\mathbf{D}g \begin{pmatrix} a \\ b \end{pmatrix} \right] = \begin{bmatrix} 1 \\ 2 \\ 4a+2b^2 \end{bmatrix} \begin{bmatrix} 2 & 2b \end{bmatrix} = \begin{bmatrix} 2 & 2b \\ 4 & 4b \\ 8a+4b^2 & 8ab+4b^3 \end{bmatrix}$.

(ii) Computing the derivative directly from

$$(f \circ \mathbf{g}) \begin{pmatrix} x \\ y \end{pmatrix} = \cos^2 x + (x+y)^2 = \cos^2 x + x^2 + 2xy + y^2$$

gives $\left[\mathbf{D}(f \circ \mathbf{g}) \begin{pmatrix} x \\ y \end{pmatrix} \right] = \begin{bmatrix} -2\cos x \sin x + 2x + 2y \\ 2x + 2y \end{bmatrix}$; since
 $\left[\mathbf{D}f \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right] = [2x \quad 2y \quad 0],$
 $\left[\mathbf{D}f \begin{pmatrix} \mathbf{g} \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix} \right] = \begin{bmatrix} 2x \quad 2y \quad 0], \\ \sin y \end{bmatrix} = \begin{bmatrix} 2\cos x \quad 2x + 2y \quad 0], \\ \begin{bmatrix} \mathbf{D}g \begin{pmatrix} x \\ y \end{pmatrix} \end{bmatrix} = \begin{bmatrix} -\sin x \quad 0 \\ 1 \quad 1 \\ 0 \quad \cos y \end{bmatrix},$

the chain rule gives

$$\begin{bmatrix} 2\cos x & 2x+2y & 0 \end{bmatrix} \begin{bmatrix} -\sin x & 0 \\ 1 & 1 \\ 0 & \cos y \end{bmatrix} = \begin{bmatrix} -2\cos x\sin x+2x+2y \\ 2x+2y \end{bmatrix}.$$

(iii) Computing the derivative from
$$(\mathbf{f} \circ f) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ 2(x^2 + y^2) \\ (x^2 + y^2)^2 \end{pmatrix}$$
 gives
$$\begin{bmatrix} \mathbf{D}(\mathbf{f} \circ f) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 2x & 2y & 0 \\ 4x & 4y & 0 \\ 4x^3 + 4xy^2 & 4x^2y + 4y^3 & 0 \end{bmatrix}; \text{ the chain rule gives}$$
$$\begin{bmatrix} \mathbf{D}\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{D}f \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2x^2 + 2y^2 \end{bmatrix} \begin{bmatrix} 2x & 2y & 0 \\ 4x & 4y & 0 \\ 4x^3 + 4xy^2 & 4x^2y + 4y^3 & 0 \end{bmatrix}.$$

(iv) Computing the derivative directly from $(f \circ \mathbf{f})(t) = t^2 + 4t^2 = 5t^2$ gives $[\mathbf{D}((f \circ \mathbf{f}))(t)] = 10t$; the chain rule gives

$$\begin{bmatrix} 2t & 4t & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2t \end{bmatrix} = 2t + 8t = 10t.$$

 ${\bf 1.8.5}$ One must also show that fg is differentiable, working from the definition of the derivative.

 $\mathbf{1.8.6}$ a. We need to prove that

$$\lim_{\vec{h} \to 0} \frac{\left| f(\mathbf{a} + \vec{h}) \cdot \mathbf{g}(\mathbf{a} + \vec{h}) - f(\mathbf{a}) \cdot \mathbf{g}(\mathbf{a}) - f(\mathbf{a}) \cdot \left([\mathbf{D}\mathbf{g}(\mathbf{a})] \vec{h} \right) - \left([\mathbf{D}f(\mathbf{a})] \vec{h} \right) \cdot \mathbf{g}(\mathbf{a}) \right|}{|\vec{h}|} = 0.$$

Since the term under the limit can be written

$$\begin{split} \left(\! \mathbf{f}(\mathbf{a}\!+\!\vec{\mathbf{h}})\!-\!\mathbf{f}(\mathbf{a})\right)\!\cdot\!\frac{\mathbf{g}(\mathbf{a}\!+\!\vec{\mathbf{h}})-\mathbf{g}(\mathbf{a})}{|\vec{\mathbf{h}}|} + \mathbf{f}(\mathbf{a})\cdot\!\left(\!\frac{\mathbf{g}(\mathbf{a}\!+\!\vec{\mathbf{h}})-\mathbf{g}(\mathbf{a})-[\mathbf{D}\mathbf{g}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right) \\ &+ \left(\!\frac{\mathbf{f}(\mathbf{a}\!+\!\vec{\mathbf{h}})-\mathbf{f}(\mathbf{a})-[\mathbf{D}\mathbf{f}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right)\cdot\mathbf{g}(\mathbf{a}), \end{split}$$

it is enough to prove that the three limits

$$\begin{split} &\lim_{\vec{h}\to 0} \left| \mathbf{f}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{f}(\mathbf{a}) \right| \frac{|\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{g}(\mathbf{a})|}{|\vec{\mathbf{h}}|} \\ &\lim_{\vec{h}\to 0} |\mathbf{f}(\mathbf{a})| \left| \frac{\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{g}(\mathbf{a}) - [\mathbf{D}\mathbf{g}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|} \right| \\ &\lim_{\vec{\mathbf{h}}\to 0} \left| \frac{\mathbf{f}(\mathbf{a}+\vec{\mathbf{h}}) - \mathbf{f}(\mathbf{a}) - [\mathbf{D}\mathbf{f}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|} \right| |\mathbf{g}(\mathbf{a})| \end{split}$$

all vanish.

55

The first vanishes because

$$\frac{|\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}})-\mathbf{g}(\mathbf{a})|}{|\vec{\mathbf{h}}|}$$

is bounded when $\vec{\mathbf{h}} \to \mathbf{0}$, and the factor $\left| f(\mathbf{a} + \vec{\mathbf{h}}) - f(\mathbf{a}) \right|$ tends to $\mathbf{0}$. The second vanishes because

$$\left|\frac{\mathbf{g}(\mathbf{a}+\vec{\mathbf{h}})-\mathbf{g}(\mathbf{a})-[\mathbf{D}\mathbf{g}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right.$$

tends to 0 when $\vec{\mathbf{h}} \to \mathbf{0}$, and the factor $f(\mathbf{a})|$ is constant. The third vanishes because

$$\frac{f(\mathbf{a}+\vec{\mathbf{h}})-f(\mathbf{a})-[\mathbf{D}f(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}$$

tends to 0 as $\vec{\mathbf{h}} \to \mathbf{0}$, and the factor $|\mathbf{g}(\mathbf{a})|$ is constant.

b. The derivative is given by the formula

$$[\mathbf{D}(\vec{\mathbf{f}}\times\vec{\mathbf{g}})(\mathbf{a})]\vec{\mathbf{h}} = \left(\left([\mathbf{D}\vec{\mathbf{f}}(\mathbf{a})]\vec{\mathbf{h}}\right)\times\vec{\mathbf{g}}(\mathbf{a})\right) + \left(\vec{\mathbf{f}}(\mathbf{a})\times\left([\mathbf{D}\vec{\mathbf{g}}(\mathbf{a})]\vec{\mathbf{h}}\right)\right).$$

The proof that this is correct is again almost identical to part a or b. We need to prove that

$$\lim_{\vec{h}\to 0} \frac{\left| \left(\vec{f}(\mathbf{a}+\vec{h})\times \vec{\mathbf{g}}(\mathbf{a}+(\vec{h})\right) - \left(\vec{f}(\mathbf{a})\times \vec{\mathbf{g}}(\mathbf{a}) \right) - \left(\vec{f}(\mathbf{a})\times \left([\mathbf{D}\vec{\mathbf{g}}(\mathbf{a})]\vec{h} \right) \right) - \left(\left([\mathbf{D}\vec{f}(\mathbf{a})]\vec{h} \right)\times \vec{\mathbf{g}}(\mathbf{a}) \right) \right|}{|\vec{h}|} = 0.$$

The term under the limit can be written as the sum of three cross products:

$$\begin{split} \left(\vec{\mathbf{f}}(\mathbf{a}+\vec{\mathbf{h}})-\vec{\mathbf{f}}(\mathbf{a})\right) \times \frac{\vec{\mathbf{g}}(\mathbf{a}+\vec{\mathbf{h}})-\vec{\mathbf{g}}(\mathbf{a})}{|\vec{\mathbf{h}}|} &+ \vec{\mathbf{f}}(\mathbf{a}) \times \left(\frac{\vec{\mathbf{g}}(\mathbf{a}+\vec{\mathbf{h}})-\vec{\mathbf{g}}(\mathbf{a})-[\mathbf{D}\vec{\mathbf{g}}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right) \\ &+ \left(\frac{\vec{\mathbf{f}}(\mathbf{a}+\vec{\mathbf{h}})-\vec{\mathbf{f}}(\mathbf{a})-[\mathbf{D}\vec{\mathbf{f}}(\mathbf{a})]\vec{\mathbf{h}}}{|\vec{\mathbf{h}}|}\right) \times \vec{\mathbf{g}}(\mathbf{a}), \end{split}$$

and, since the area of a parallelogram is at most the product of the lengths of the sides, we have

$$ec{\mathbf{f}}(\mathbf{x}) imes ec{\mathbf{g}}(\mathbf{x}) ert \leq ec{\mathbf{f}}(\mathbf{x}) ert ec{\mathbf{g}}(\mathbf{x}) ert.$$

Thus it is enough to prove that the three limits

$$\begin{split} &\lim_{\vec{\mathbf{h}}\to\mathbf{0}} \left| \vec{\mathbf{f}}(\mathbf{a}+\vec{\mathbf{h}}) - \vec{\mathbf{f}}(\mathbf{a}) \right| \frac{\left| \vec{\mathbf{g}}(\mathbf{a}+\vec{\mathbf{h}}) - \vec{\mathbf{g}}(\mathbf{a}) \right|}{\left| \vec{\mathbf{h}} \right|} \\ &\lim_{\vec{\mathbf{h}}\to\mathbf{0}} \left| \vec{\mathbf{f}}(\mathbf{a}) \right| \left| \frac{\vec{\mathbf{g}}(\mathbf{a}+\vec{\mathbf{h}}) - \vec{\mathbf{g}}(\mathbf{a}) - [\mathbf{D}\vec{\mathbf{g}}(\mathbf{a})]\vec{\mathbf{h}}}{\left| \vec{\mathbf{h}} \right|} \right| \\ &\lim_{\vec{\mathbf{h}}\to\mathbf{0}} \left| \frac{\vec{\mathbf{f}}(k\mathbf{a}+\vec{\mathbf{h}}) - \vec{\mathbf{f}}(\mathbf{a}) - [\mathbf{D}\vec{\mathbf{f}}(\mathbf{a})]\vec{\mathbf{h}}}{\left| \vec{\mathbf{h}} \right|} \right| \left| \vec{\mathbf{g}}(\mathbf{a}) \right| \end{split}$$

all vanish, which again happens for the same reasons as in part a.

1.8.7 Since $[\mathbf{D}f(x)] = [x_2 \ x_1 + x_3 \ x_2 + x_4 \ \cdots \ x_{n-2} + x_n \ x_{n-1}]$, we have $[\mathbf{D}(f(\gamma(t)))] = [t^2 \ t + t^3 \ t^2 + t^4 \ \cdots \ t^{n-2} + t^n \ t^{n-1}]$. In addition, $\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$

$$[\mathbf{D}\gamma(t)] = \begin{bmatrix} 2t\\ \vdots\\ nt^{n-1} \end{bmatrix}.$$
 So the derivative of the function $t \to f(\gamma(t))$ is

$$\underbrace{[\mathbf{D}(f \circ \gamma)(t)]}_{\text{deriv. of comp. at } t} = \underbrace{[\mathbf{D}f(\gamma(t))]}_{\text{deriv. of } f} \underbrace{[\mathbf{D}\gamma(t)]}_{\text{deriv. of } \gamma \text{at } t} = t^2 + \left(\sum_{i=2}^{n-1} it^{i-1}(t^{i-1} + t^{i+1})\right) + nt^{2(n-1)}$$

1.8.8 True. If there were such a mapping g, then

$$\begin{bmatrix} \mathbf{Df}\begin{pmatrix} 0\\0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{Dg}\begin{pmatrix} 1\\1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{Df} \circ \mathbf{g}\begin{pmatrix} 1\\1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

The first equality is the chain rule, the second comes from the fact that $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$ is linear, so its derivative is itself.

So let
$$\begin{bmatrix} \mathbf{Dg} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; our equation above says
 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

This equation has no solutions, since a + c must simultaneously be 1 and 0.

.

1.8.9 Clearly

$$D_1 f\left(\begin{array}{c} x\\ y\end{array}\right) = 2xy\varphi'(x^2 - y^2); \qquad D_2 f\left(\begin{array}{c} x\\ y\end{array}\right) = -2y^2\varphi'(x^2 - y^2) + \varphi(x^2 - y^2).$$

Thus

$$\begin{aligned} \frac{1}{x}D_1f\left(\frac{x}{y}\right) + \frac{1}{y}D_2f\left(\frac{x}{y}\right) &= 2y\varphi'(x^2 - y^2) - 2y\varphi'(x^2 - y^2) + \frac{1}{y}\varphi(x^2 - y^2) \\ &= \frac{1}{y^2}f\left(\frac{x}{y}\right). \end{aligned}$$

To use the chain rule, write $f = k \circ \mathbf{h} \circ \mathbf{g}$, where

$$\mathbf{g}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x^2 - y^2\\ y \end{pmatrix}, \quad \mathbf{h}\begin{pmatrix} u\\ v \end{pmatrix} = \begin{pmatrix} \varphi(u)\\ v \end{pmatrix}, \quad k\begin{pmatrix} s\\ t \end{pmatrix} = st.$$

This leads to

$$\begin{bmatrix} \mathbf{D}f\begin{pmatrix} x\\ y \end{bmatrix} \end{bmatrix} = \begin{bmatrix} t,s \end{bmatrix} \begin{bmatrix} \varphi'(u) & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2x & -2y\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2xt\varphi'(u), & -2yt\varphi'(u)+s \end{bmatrix}.$$

Insert the values of the variables; you find

$$D_1 f\begin{pmatrix} x\\ y \end{pmatrix} = 2xy \,\varphi'(x^2 - y^2) \text{ and } D_2 f\begin{pmatrix} x\\ y \end{pmatrix} = -2y^2 \varphi'(x^2 - y^2) + \varphi(x^2 - y^2).$$

Now continue as above.

Solution 1.8.9: This isn't really a good problem to test knowledge of the chain rule, because it is easiest to solve it without ever invoking the chain rule (at least in several variables).

1.8.10 In the first printing, the problem was misstated. The problem should say: "If $f : \mathbb{R}^2 \to \mathbb{R}$ can be written ... " (it should not be "If $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ can be written ... "). The function f must be scalar-valued, since φ is.

(a) Let
$$f\begin{pmatrix} x\\ y \end{pmatrix} = \varphi(x^2 + y^2)$$
. By the chain rule, we have
 $\begin{bmatrix} \mathbf{D}f\begin{pmatrix} x\\ y \end{pmatrix} \end{bmatrix} = \begin{bmatrix} D_1f\begin{pmatrix} x\\ y \end{pmatrix}, D_2f\begin{pmatrix} x\\ y \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{D}\varphi(x^2 + y^2) \end{bmatrix} [2x, 2y].$
So

$$D_1 f\begin{pmatrix} x\\ y \end{pmatrix} = 2x [\mathbf{D}\varphi(x^2 + y^2)]$$
 and $D_2 f\begin{pmatrix} x\\ y \end{pmatrix} = 2y [\mathbf{D}\varphi(x^2 + y^2)].$

The result follows immediately.

(b) Let f satisfy $xD_2f - yD_1f = 0$, and let us show that it is constant on circles centered at the origin. This is the same thing as showing that for the function

$$g\begin{pmatrix}r\\\theta\end{pmatrix} \stackrel{\mathrm{def}}{=} f\begin{pmatrix}r\cos\theta\\r\sin\theta\end{pmatrix},$$

we have

$$D_{\theta}g = 0.$$

This derivative can be computed by the chain rule, to find

$$D_{\theta}g\begin{pmatrix}r\\\theta\end{pmatrix} = \left(D_{1}f\begin{pmatrix}r\cos\theta\\r\sin\theta\end{pmatrix}\right)\left(-r\sin\theta\right) + \left(D_{2}f\begin{pmatrix}r\cos\theta\\r\sin\theta\end{pmatrix}\right)\left(r\cos\theta\right)$$
$$= xD_{2}f\begin{pmatrix}r\cos\theta\\r\sin\theta\end{pmatrix} - yD_{1}f\begin{pmatrix}r\cos\theta\\r\sin\theta\end{pmatrix} = 0.$$
So $f\begin{pmatrix}x\\y\end{pmatrix} = f\begin{pmatrix}\sqrt{x^{2}+y^{2}}\\0\end{pmatrix}$, and we can take $\varphi(r) = f\begin{pmatrix}r\\0\end{pmatrix}$.

1.8.11 Using the chain rule in one variable,

$$D_1 f = \varphi'\left(\frac{x+y}{x-y}\right) \left(\frac{1(x-y)-1(x+y)}{(x-y)^2}\right) = \varphi'\left(\frac{x+y}{x-y}\right) \left(\frac{-2y}{(x-y)^2}\right)$$

and

$$D_2 f = \varphi'\left(\frac{x+y}{x-y}\right) \left(\frac{1(x-y) - (-1)(x+y)}{(x-y)^2}\right) = \varphi'\left(\frac{x+y}{x-y}\right) \left(\frac{2x}{(x-y)^2}\right)$$
so

$$xD_1f + yD_2f = \varphi'\left(\frac{x+y}{x-y}\right)\left(\frac{-2xy}{(x-y)^2}\right) + \varphi'\left(\frac{x+y}{x-y}\right)\left(\frac{2yx}{(x-y)^2}\right) = 0$$

 $\mathbf{1.8.12}$ a. True: the chain rule tells us that

$$[\mathbf{D}(\mathbf{g}\circ\mathbf{f})(\mathbf{0})]ec{\mathbf{h}} = [\mathbf{D}ig(\mathbf{g}(\mathbf{f}(\mathbf{0})ig)][\mathbf{D}\mathbf{f}(\mathbf{0})]ec{\mathbf{h}}.$$

If there exists a differentiable function \mathbf{g} such that $(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{x}$, then $[\mathbf{D}(\mathbf{g} \circ \mathbf{f})(\mathbf{0})] = I$ which would mean that

$$[\mathbf{D}(\mathbf{g}\circ\mathbf{f})(\mathbf{0})]\vec{\mathbf{h}} = [\mathbf{D}\big(\mathbf{g}(\mathbf{f}(\mathbf{0})\big)][\mathbf{D}\mathbf{f}(\mathbf{0})]\vec{\mathbf{h}} = \vec{\mathbf{h}},$$