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i.e., [D
(
g(f(0)

)
][Df(0)] = I. But by definition, [Df(0)]−1 does not exist

so g cannot exist.
b. False; example 1.9.4 provides a counterexample.

1.8.13 Call S(A) = A2 + A and T (A) = A−1. We have F = T ◦ S, so

[DF (A)]H = [DT (A2 + A)][DS(A)]H

= [DT (A2 + A)](AH + HA + H)

= −(A2 + A)−1(AH + HA + H)(A2 + A)−1.

It isn’t really possible to simplify this much.

1.9.1 Except at
(

0
0
)
, the partial derivatives of f are given by

D1f
(

x
y

)
=

2x5 + 4x3y2 − 2xy4

(x2 + y2)2
and D2f

(
x
y

)
=

4x2y3 − x4y + 2y5

(x2 + y2)2
.

At the origin, they are both given by

D1f
(

0
0
)

= D2f
(

0
0
)

= lim
h→0

1
h

(
h4

h2

)
= 0.

Thus there are partial derivatives everywhere, and we need to check that
they are continuous. The only problem is at the origin. One easy way to
show this is to remember that

|x| ≤
√

x2 + y2 and |y| ≤
√

x2 + y2.

Then both partial derivatives satisfy

|Dif
(

x
y

)
| ≤ 8

(x2 + y2)5/2

(x2 + y2)2
=
√

x2 + y2.

Thus the limit of both partials at the origin is 0, so the partials are contin-
uous and f is differentiable everywhere.

1.9.2 a. There is not problem except at the origin; everywhere else the
function is differentiable, since it is a quotient of two polynomials, and the
denominator does not vanish.

At the origin, to compute the directional derivative in the direction
(

x
y

)
,

we must show that the limit

lim
h→0

1
h

(
3h3x2y − h3y3

h2(x2 + y2)

)
=

3x2y − y3

x2 + y2

exists, which it evidently does. But the limit, which is in fact the function
itself, is not a linear function of

(
x
y

)
, so the function is not differentiable.

b.
c.

1.9.3 a. It means that there is a line matrix [a, b] such that

lim
h⃗→0

sin
(

h2
1h

2
2

h2
1 − h2

2

)
− ah1 − bh2

(h2
1 + h2

2)1/2
= 0.
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b. Since f vanishes identically on both axes, both partials exist, and are
0 at the origin. In fact, D1f vanishes on the x-axis and D2f vanishes on
the y-axis.

c. We know that if f is differentiable at the origin, then its partial
derivatives exist at the origin and are the numbers a, b of part a. Thus for
f to be differentiable at the origin, we must have

lim
h⃗→0

sin
(

h2
1h

2
2

h2
1 − h2

2

)

(h2
1 + h2

2)1/2
= 0,

and this is indeed the case, since

| sin(h2
1h

2
2)| ≤ |h2

1h
2
2| < |h1|2 + |h2|2 when |h1|, |h2| < 1.
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1.1 a. not a subspace: 0⃗ is not on the line. b. not a subspace: 0⃗ is not on
the line. c. a subspace.

1.2 AB =
[

1 + ab a
a 0

]
BA =

[
1 a

a + b ab

]
. So AB = BA if and only

if

ab = 0 and a + b = a. So b = 0 and a can be anything.

1.3 If A and B are upper-triangular matrices, then if i > j we know that
ai,j = bi,j = 0. Using the definition of matrix multiplication

ci,j =
n∑

k=1

ai,kbk,j ,

we see that if i > j, then in the summation either ai,k = 0 or bk,j = 0, so
ci,j =

∑n
k=1 0 = 0. If for all i > j ci,j = 0, then C is upper-triangular, so

if A, B are upper-triangular, AB is also upper-triangular.

1.4 a. Since z1 + z2 = α1 + α2 + (β1 + β2)i,
[

α1 β1

−β1 α1

]

︸ ︷︷ ︸
Tz1

+
[

α2 β2

−β2 α2

]

︸ ︷︷ ︸
Tz2

=
[

α1 + α2 β1 + β2

−β1 − β2 α1 + α2

]

︸ ︷︷ ︸
Tz1+z2

Since z1z2 = α1α2 − β1β2 + (α1β2 +α2β1)i, Tz1z2 is the matrix on the left,
which is the product of the two matrices on the right:

[
α1α2 − β1β2 α1β2 + α2β1

−α1β2 − α2β1 α1α2 − β1β2

]

︸ ︷︷ ︸
Tz1z2

=
[

α1 β1

−β1 α1

] [
α2 β2

−β2 α2

]
.

b. T−1
z =

1
α2 + β2

[
α −β
β α

]

︸ ︷︷ ︸
Tz̄

. This corresponds to
1
z

=
1

α+ iβ
=

α− iβ

α2 + β2
=

z̄

α2 + β2
.

c. A good choice is Ti. This gives
[

0 1
1 0

]2
=
[
−1 0

0 −1

]

1.5 a. Labeling the vertices in the direction of the arrows:

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦
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b. Labeling from top left clockwise:

⎡

⎢⎣

0 1 1 1
0 0 1 0
0 0 0 0
0 0 1 0

⎤

⎥⎦

c. Labeling starts at center, then bottom left clockwise:

⎡

⎢⎣

0 1 0 1
0 0 1 0
1 0 0 1
1 1 1 0

⎤

⎥⎦

1.6 a. The mapping

⎡

⎢⎣

x1

x2

x3

x4

⎤

⎥⎦ $→
[

x2

x4

]
is linear; denoting the mapping by T

we have

T (ax⃗) =
[

ax2

ax4

]
= aT (x⃗) and T (x⃗ + w⃗) =

[
x2 + w2

x4 + w2

]
= T (x⃗) + T (w⃗).

Its matrix is
[

0 1 0 0
0 0 0 1

]
.

b. This mapping is not linear. Denote it by T . Then

T (ax⃗) =
[

a2x2x4

a(x1 + x3)

]
̸= aT (x⃗) =

[
ax2x4

a(x1 + x3)

]
.

1.7 a. Yes there is; its matrix is [T ] =

⎡

⎣
1 0 0 2
0 1 1 −1
0 2 1 −1

⎤

⎦. We computed this

matrix by denoting by v⃗1, v⃗2, v⃗3, v⃗4 the four input vectors and determining
what combinations of these vectors give the four standard basis vectors in
R4. For example, e⃗4 = v⃗3 − v⃗2, so the fourth column of the matrix is

T e⃗4 = T v⃗3 − T v⃗2 =

⎡

⎣
2
−1
−1

⎤

⎦ . Similarly, e⃗1 = v⃗4 − v⃗3 + v⃗2 so T (⃗e1) =

T v⃗4−T v⃗3 +T v⃗2 =

⎡

⎣
1
0
0

⎤

⎦. We then confirmed that this matrix does indeed

satisfy the four equations of the exercise.

b. No, it is not linear; we have [T ]

⎡

⎢⎣

1
1
1
1

⎤

⎥⎦ =

⎡

⎣
3
1
2

⎤

⎦, not

⎡

⎣
0
3
2

⎤

⎦. Another way

to see this is to say that if S were linear, then by part (a) we would have

Se⃗1 =

⎡

⎣
1
0
0

⎤

⎦ , Se⃗2 =

⎡

⎣
0
1
2

⎤

⎦ , Se⃗3 =

⎡

⎣
0
1
1

⎤

⎦ , Se⃗4 =

⎡

⎣
2
−1
−1

⎤

⎦ ,

which by linearity should give S

⎡

⎢⎣

1
1
1
1

⎤

⎥⎦ = S(⃗e1 + e⃗2 + e⃗3 + e⃗4) =

⎡

⎣
3
1
2

⎤

⎦.
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1.8

T =

⎡

⎣
cos(30◦) 0 sin(30◦)

0 1 0
− sin(30◦) 0 cos(30◦)

⎤

⎦

1.9 a. The matrices of S and T are

[S] =

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ and [T ] =

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ .

b. The matrices of the compositions are given by matrix multiplication:

[S ◦ T ] = [S][T ] =

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ and [T ◦ S] = [T ][S] =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ .

c. The matrices [S ◦ T ] and [T ◦ S] are inverses of each other: you can
either compute it out, or note that since S and T are reflections, we have
S ◦ S = T ◦ T = I, so

T ◦ (S ◦ S) ◦ T = T ◦ T = I and S ◦ (T ◦ T ) ◦ S = S ◦ S = I.

d. They are the rotations by 2π/3 and −2π/3 around the line
x = y = z, counterclockwise if you look from a point of this line with
positive coordinates towards the origin.

1.10 Let θ be the angle between A and A−1 = 1
ad−bc

[
d −b
−c a

]
, where

each matrix is viewed as a vector in R4. Then

cos θ =
A · A−1

|A| |A−1| = sgn(ad− bc)
2ad− b2 − c2

a2 + b2 + c2 + d2

The matrices are orthogonal if 2ad = b2 + c2.

1.11 Below we denote by |
−→
side| the length of the side.

a. Because the side and the diagonal define a right triangle,

angle between
−→
side and

−→
diagonal = arccos

⎛

⎝ |
−→
side|

|
−→

diagonal|

⎞

⎠

θx = arccos
(

a√
a2 + b2 + c2

)
θy = arccos

(
b√

a2 + b2 + c2

)

θz = arccos(
c√

a2 + b2 + c2
)

b. Volume (parallelepiped) = abc = area(base) × height, but
height = length(diagonal) × sin(angle of diagonal with face), so
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angle = arcsin
(

abc

area(base)
√

a2 + b2 + c2

)

θx−y = arcsin
(

abc

ab
√

a2 + b2 + c2

)
= arcsin

(
c√

a2 + b2 + c2

)

θx−z = arcsin
(

abc

ac
√

a2 + b2 + c2

)
= arcsin

(
b√

a2 + b2 + c2

)
θy−z

= arcsin
(

abc

bc
√

a2 + b2 + c2

)
= arcsin

(
a√

a2 + b2 + c2

)

1.12 a. We have

a⃗× b⃗ =

⎡

⎣
1
0
1

⎤

⎦×

⎡

⎣
2
−1

1

⎤

⎦ =

⎡

⎣
1
1
−1

⎤

⎦ , b⃗× c⃗ =

⎡

⎣
2
−1

1

⎤

⎦×

⎡

⎣
0
1
−1

⎤

⎦ =

⎡

⎣
0
2
2

⎤

⎦ ,

c⃗× a⃗ =

⎡

⎣
0
1
−1

⎤

⎦×

⎡

⎣
1
0
1

⎤

⎦ =

⎡

⎣
1
−1
−1

⎤

⎦

so

QA =

⎡

⎣
0 2 2
1 −1 −1
1 1 −1

⎤

⎦ .

b. We have

QA A =

⎡

⎣
0 2 2
1 −1 −1
1 1 −1

⎤

⎦

⎡

⎣
1 2 0
0 −1 1
1 1 −1

⎤

⎦ =

⎡

⎣
2 0 0
0 2 0
0 0 2

⎤

⎦ .

c. For the product QA A in general, we find
⎡

⎣ a⃗ b⃗ c⃗

⎤

⎦

⎡

⎣
(b⃗× c⃗)⊤
(⃗c× a⃗)⊤
(a⃗× b⃗)⊤

⎤

⎦

⎡

⎣
a⃗ · (b⃗× c⃗) 0 0

0 b⃗ · (⃗c× a⃗) 0
0 0 c⃗ · (a⃗× b⃗)

⎤

⎦
.

The zeroes are there because the cross product of two vectors is orthogonal
to both, and in each off-diagonal entry we have the dot product of the cross
product of two vectors with one of the two. The entries on the diagonal are
all equal to the determinant of A. So QA A = (detA)I.

d. The two problems are identical.

1.13 a. The normalized vectors are:

i.
1√
14

⎡

⎣
2
1
3

⎤

⎦ , ii.
1√
13

[
−2

3

]
, iii.

1√
7

⎡

⎣

√
3

0
2

⎤

⎦ .
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b. The angle θ satisfies cos θ =
2
√

3 + 6
7
√

2
, i.e., θ = arccos

2
√

3 + 6
7
√

2
.

1.14 a. We have θn = arccos
√

6n(n + 1)
2
√

2n4 + 3n3 + n2
, since

cos θn =
v⃗ · w⃗
|v⃗||w⃗| =

n(n + 1)
2

√
n

√
n(n + 1)(2n + 1)

6

=
√

6n(n + 1)
2
√

2n4 + 3n3 + n2

b. As n → ∞, θ = 30◦ = π/6. The important terms are those with n2;
the others are negligible. This gives

lim
n→∞

n2
√

6
2n2
√

2
=
√

3
2

.

We can justify the statement “the others are negligible” by writing

lim
n→∞

√
6n(n + 1)

2
√

2n4 + 3n3 + n2
= lim

n→∞

√
6 n2(1 + 1

n )

2
√

2 n2
√

1 + 3
2n + 1

2n2

=
√

6 n2

2
√

2 n2
=
√

6
2
√

2
.

Solution 1.15: Notation for se-
quences can be ambiguous. A se-
quence x1, x2, . . . may be written
xi, but xi can also refer to some
collection of the elements of the
sequence. The correct way to de-
scribe the sequence in part a is:
Let i !→ xi be a sequence in ∩iCi,
i.e, a map N→ ∩iCi.

1.15 a. Let Ci, i ∈ I be some collection of closed subsets of Rn. We will
use proposition 1.5.17 to show that their intersection is closed. Indeed, let
x1,x2, . . . be a convergent sequence in ∩i∈ICi, converging in Rn to some
x0. Then the sequence xi belongs to each Ci, and since the Ci are closed,
we have x0 ∈ Ci for each i ∈ I. Therefore x0 ∈ ∩i∈ICi.

b. Again, we will use proposition 1.5.17. Let C1, . . . , Cm be a finite
collection of closed subsets of Rm. Suppose that x1,x2, . . . is a convergent
sequence in the union ∪m

i=1Ci, converging in Rn to some x0. Then infinitely
many of the entries of the sequence must be elements of a single Ck; these
form a subsequence, which still converges to x0 by proposition 1.5.19. Hence
x0 is an element of Ck, hence also an element of ∪m

i=1Ci. It follows from
proposition 1.5.17 that the union is closed.

c. The union of the closed sets [0, (n − 1)/n], n = 2, 3, 4, . . . is the
nonclosed set [0, 1).
1.16 Suppose that x1,x2, . . . is a convergent sequence, converging in Rn

to some x0; and that each xi ∈ U, i = 1, 2, . . . . We need to prove that in
that case x0 also belongs to U , i.e. that there exists a sequence yi in U (as
opposed to U) which converges to x0. By hypothesis, there exist sequences
zi,j in U such that z1,i, z2,i, z3,i, . . . converges to xi for each i. For each
N = 1, 2, . . . , find i(N) such that |xi(N) − x0| < 1/(2N), then find j(N)
such that zj(N),i(N) − xi(N)| < 1/(2N). Consider the sequence

zj(1),i(1), zj(2),i(2), zj(3),i(3), . . . .

It is a sequence in U , and since

|x0 − zj(N),i(N)| ≤ |x0 − xi(N)| + |xi(N) − zj(N),i(N)| < 1/N,
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this sequence converges to x0.

1.17 a. The derivative of the function zy2 at p =

⎛

⎝
1
1
1

⎞

⎠ is [0 2 1], so the

directional derivatives at p in the directions e⃗1, e⃗2, e⃗3, v⃗1, v⃗2 are

[0 2 1]⃗e1 = 0, [0 2 1]⃗e2 = 2, [0 2 1]⃗e3 = 1, [0 2 1]v⃗1 =
√

2/2

[0 2 1]v⃗2 = 3
√

2/2.

So the function zy2 increases most slowly in the direction e⃗1.
b. The derivative of the function 2x2 − y2 at p is [4 − 2 0], giving the

directional derivatives at p

[4 − 2 0]⃗e1 = 4, [4 − 2 0]⃗e2 = −2, [4 − 2 0]⃗e3 = 0

[4 − 2 0]v⃗1 = 2
√

2, [4 − 2 0]v⃗2 = −
√

2.

So to make 2x2 − y2 increase as much as possible, also choose direction e⃗1.
3. To make 2x2 − y2 decrease as much as possible, choose direction e⃗2.

1.18 a. f(x) =
∣∣∣
(

2
3
)
−
(

x
x2

)∣∣∣
2

= x4 − 5x2 − 4x + 13.

b. Df = 4x3 − 10x− 4 = 0⇒ x3 − 10
4 x− 1 = 0, so in the nomenclature

of Section 0.7 (Equation A2.10) we have p = −10
4 , and q = −1, and the

discriminant ∆ = 27q2 + 4p3 = 27 + 4(−10/4)3 is negative. That means
that there are three real roots, and they can be found using the formula of
Exercise A2.6. This gives the following roots:

xk =
cos
(

1
3 arccos

(√
54
125

)
+ 2πk

3

)

√
3/10

, k = 0, 1, 2.

c. The function goes to positive infinity when x → ±∞, so we know it
must take on an absolute minimum. This minimum must occur at one of
the roots of the derivative of the function. Since the function takes on a
lower value at x0 than at either x1 or x2, r = f(x0).

1.19 a. This uses a trick:
x + y

x2 − y2
=

x + y

(x + y)(x− y)
=

1
x− y

;

there is no limit as
(

x
y

)
→
(

0
0
)
, since when

(
x
y

)
is close to the origin,

x− y is also small (perhaps 0), so the quotient is big (or undefined).
b. Again the limit does not exist: on the line y = kx, this function is

x4(1 + k2)2

x(1 + k)
= x3 (1 + k2)2

1 + k
.

Choose ϵ > 0, and set 1 + k = ϵ4 and x = ϵ; the function becomes

ϵ3

ϵ4
(1 + k2) >

1
ϵ
.
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Thus there are points near the origin where the function is arbitrarily large.
But there are also points where the function is arbitrarily close to 0, taking
x = y = ϵ.

The statement

lim
u→0

u ln |u| = 0,

can be proved using l’Hôpital’s

rule applied to
ln |u|
1/u

. We used

this already in solution 1.5.21.

c. Since limu→0 u ln |u| = 0, the limit is 0.
d. Let us look at the function on the line y = ϵ, for some ϵ > 0. The

function becomes

(x2 + ϵ2)(ln |x| + ln ϵ) = x2 ln |x| + ϵ2 ln |x| + x2 ln ϵ+ ϵ2 ln ϵ.

When |x| is small, the first, third, and fourth terms are small. But the
second is not. If x = e−1/ϵ3 , for instance, the second term is

−ϵ
2

ϵ3
= −1

ϵ
,

which will become arbitrarily large as ϵ → 0. Thus along the curve x =
e−1/ϵ3 , y = ϵ, the function tends to −∞. But along the curve x = y = ϵ,
the function tends to 0, so it has no limit.

1.20 Proof of Theorem 1.5.28
a. Choose ϵ > 0, and find δ1, δ2 > 0 such that

|f(x)− f(x0)| < ϵ/2 when x ∈ U and |x− x0| < δ1

|g(x)− g(x0)| < ϵ/2 when x ∈ U and |x− x0| < δ2.

Set δ = min{δ1, δ2} Then

|h(x)f(x)− h(x0)f(x0)| ≤ |h(x)f(x)− h(x0)f(x)| + |h(x0)f(x)− h(x0)f(x0)|
≤ |f(x)| |h(x)− h(x0)| + |h(x0)| |f(x)− f(x0)|
≤
(
|f(x0)| + ϵ

)
ϵ+ |h(x0)|ϵ =

(
|f(x0)| + |h(x0)| + ϵ

)
ϵ

when x ∈ U and |x− x0| < δ.
b. Choose ϵ > 0, and find δ1, δ2 > 0 such that

|f(x)− f(x0)| < ϵ when x ∈ U and x− x0| < δ1

|h(x)− h(x0)| < ϵ when x ∈ U and x− x0| < δ2.

Set δ = min{δ1, δ2} Then

|h(x)f(x)− h(x0)f(x0)| ≤ |h(x)f(x)− h(x0)f(x)| + |h(x0)f(x)− h(x0)f(x0)|
≤ |f(x)| |h(x)− h(x0)| + |h(x0)| |f(x)− f(x0)|
≤ (|f(x0)| + ϵ)ϵ+ |h(x0|ϵ = (|f(x0)| + |h(x0| + ϵ)ϵ

when x ∈ U and |x− x0| < δ.
c. Using (b), it is enough to show that 1/h is continuous at x0. Choose

ϵ > 0, and find δ > 0

|h(x)− h(x0)| < ϵ and |h(x)| > |h(x0)|/2 when x ∈ U and |x− x0| < δ.

Then ∣∣∣∣
1

h(x)
− 1

h(x0)

∣∣∣∣ =
∣∣∣∣
h(x0)− h(x)
h(x)h(x0)

∣∣∣∣ ≤
2ϵ

|h(x0)|2
.
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d. We can write f · g =
∑

figi. Each of the summands is continuous by
(b), so their sum is continuous by (a).

e. Choose ϵ > 0, and find δ > 0 such that |h(x)| ≤ ϵ when x ∈ U and
|x − x0| < δ. By hypothesis, there exists M such that |f(x)| ≤ M for all
x ∈ U . Thus

|h(x)f(x)| ≤ ϵM

when x ∈ U and |x− x0| < δ.

Proof of Theorem 1.5.29. [not yet written]

1.21 Let πn be π to n places (e.g., π2 = 3.14). Then π − πn < 10−n. We
can do the same with e. So:∣∣∣∣an −

[
π
e

]∣∣∣∣ <
√

2 · 102(−n) = (
√

2)10−n < 10−n+1.

This means that the best we can say in general is that to get |an−
[
π
e

]
| <

10−m we need n = m + 1. When n = 3, one less is enough, because
(.59 . . . )2 + (.28 . . . )2 < 1. But when m = 4, we really need m = 5, since
(.92 . . . )2 + (.81 . . . )2 > 1

1.22 If θ = 2kπ with k ∈ Z, then the sequence is constant and converges.
Otherwise the sequence does not converge (mθ does not converge modulo
2π). The sequence always has a convergent subsequence: if θ is a rational
multiple of π then there is a constant subsequence. Otherwise ∀M ∈ N, ϵ >
0 ∃m > M such that |mθ| < ϵ modulo 2π ( θ

2π is irrational).

1.23 Let anzn be the term of highest degree. Let c > 0 be the real number
such that ancn = p(c)− ancn. Then for any R > c we know that p(z) ̸= 0
for any |z| ≥ R. (The term in z10 is nonzero and the other terms together
cannot match it.) We know by the fundamental theorem of algebra that
p(z) must have at least one root (and we know by corollary 1.6.14 that it
has exactly ten). Therefore we know that p(z) has a root for |z| < R if
R > c.

1.24 The derivative of f is the n× n matrix whose i, jth entry is

Djfi = Dj((x2
1 + x2

2 + ... + x2
n)xi).

This is 2xixj if i ̸= j and (x2
1 + x2

2 + ... + x2
n) + 2x2

i if i = j.

1.25 We have
√

x2 = |x|, so limh→0
1
h (f(h)−f(0)) = limh→0

|h|
h which does

not exist (since it is ±1 depending on whether h is positive or negative).
For 3
√

x2, we have limh→0
1
h (f(h) − f(0)) = limh→0

h2/3

h = limh→0
1

h1/3 ,
which tends to ±∞.√

x4 = x2 is differentiable, of course.

1.26 a. The derivative of

C : Mat (2, 2)→ Mat (2, 2), A $→ A3
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is [DC(A)]H = A2H + AHA + HA2. This is seen as follows:

(A + H)3 = A3 + A2H + AHA + HA2 + AH2 + HAH + H2A + H3,

and the linear terms in H are A2H + AHA + HA2; this should be the
derivative (see Remark 1.7.6). We can confirm this is true by writing

|(A+ H)3 −A3 − (A2H +AHA +HA2)|
|H| =

|AH2+ HAH + H2A + H3|
|H|

≤ 3|A||H|2 + |H|2|H|
|H| = 3|A||H| + |H|2.

Clearly this goes to 0 as H → 0. (Note that taking absolute values of the
numerator is justified because if the length of a matrix goes to 0, the matrix
necessarily goes to 0.) What theorem justifies the inequality above?1

b. Let us denote the mapping A $→ Ak by P (for “power”). The linear
terms in H of P (A + H)− P (A) are

k−1∑

i=0

AiHAk−1−i = HAk−1 + AHAk−2 + · · ·Ak−2HA + Ak−1H. (1)

(You can find this by trying some values of k, simplifying the computations
by immediately disregarding quadratic and higher terms of H. For example,
(A + H)3 has only four relevant terms, A3 + AHA2 + HA3 + A3H; when
multiplying this by (A + H) to compute (A + H)4 − A4, we don’t bother
to multiply H times any term that has an H.)

We confirm that equation (1) is indeed the derivative by the following
argument: the difference

(A + H)k −Ak −
k−1∑

i=0

AiHAk−1−i

consists of sum of (a lot of) terms Xm, each of which is a product of at
least j ≥ 2 factors of H, and k − j factors of A. By proposition 1.4.11, we
have |Xm| ≤ |H|j |A|k−j . Therefore

|Xm|
|H| ≤ |H|j−1|A|k−j , and lim

H→0

|Xm|
|H| = 0.

Finally, we have

lim
H→0

1
|H|

∣∣∣∣∣(A + H)k −Ak −
k−1∑

i=0

AiHAk−1−i

∣∣∣∣∣ ≤ lim
H→0

∑

m

|Xm|
|H| = 0.

1.27 a. Both partials exist at
(

0
0
)

and are 0, but the function is not
differentiable. Indeed, if it were, the derivative would necessarily be the
Jacobian matrix, i.e., the 0 matrix, and we would have

lim
h⃗→0

f(h⃗)− f(0)− [0, 0]h⃗
|h⃗|

= 0.

1Theorem 1.4.9, the triangle inequality.
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But writing the definition out leads to

lim
h⃗→0

h2
1h2

(h2
1 + h2

2)
√

h2
1 + h2

2

= 0,

which isn’t true: for instance, if you set h1 = h2 = t, the expression above
becomes

t3

2
√

2 |t|3
, which does not become small as t→ 0.

Solution 1.27,part b: If f were
differentiable, then by the chain
rule the composition would be dif-
ferentiable, and it isn’t.

b. This function is not differentiable. If you set g(t) =
(

t
t

)
, then

(f ◦g)(t) = 2|t| is not differentiable at t = 0, but g is differentiable at t = 0,
so f is not differentiable at the origin, which is g(0).

c. Here are two proofs of part c:
First proof This isn’t even continuous at the origin, although both par-

tials exist there and are 0. But if you set x = t, y = t, then
For x small, sin x ≈ x; see equa-

tion 3.4.6 for the Taylor polyno-
mial of sin(x).

sin(xy)
x2 + y2

=
sin t2

2t2
→ 1

2
, as t→ 0.

Second proof This function is not differentiable; although both partial
derivatives exist at the origin, the function itself is not continuous at the
origin. For example, along the diagonal,

lim
t→0

sin t2

2t2
=

1
2
,

but the limit along the antidiagonal is −1/2:

lim
t→0

sin(−t2)
2t2

= −1
2
.

1.28 a. The area is given by the length of the cross product of the two
vectors:

∣∣∣∣∣∣

⎡

⎣
u
0
u2

⎤

⎦×

⎡

⎣
0
v2

v

⎤

⎦

∣∣∣∣∣∣
=

∣∣∣∣∣∣

⎡

⎣
−u2v2

−uv
uv2

⎤

⎦

∣∣∣∣∣∣
=
√

u4v4 + u2v2 + u2v4.

b. The quantity under the square root is strictly positive except on the
axes, so A is differentiable except on the axes, and we find
[
DA

(
u
v

)]
=

1√
u4v4 + u2v4 + u2v2

[2u3v4+uv2+uv4, 2u4v3+u2v+2u2v3].

Thus
[
DA

(
1
−1
)]

= [4/
√

3, −5/
√

3]. Evaluated on
[

1
2

]
this gives −6/

√
3.

c. Among vectors with length 1, the direction in which the area increases

fastest is
[

4/
√

41
−5/
√

41

]
. To compute this, we use v⃗ · w⃗ = |v⃗| · |w⃗| cos θ,

where θ is the angle between the two vectors; this quantity is greatest when
cos θ = 1, i.e., when the two vectors point in the same direction. Therefore
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we wanted a vector with length 1 that points in the same direction as[
4/
√

3
−5/
√

3

]
, which is any multiple of

[
4
−5

]
. To normalize

[
4
−5

]
, we divide

by its length.

d. At
(

1
1
)
, A is still

√
3, and

[
DA

(
1
1
)]

= [4/
√

3, 5/
√

3]. Evaluated

on
[

1
2

]
this gives 14/

√
3.

e. Among vectors with length 1, the direction in which the area increases

fastest is
[

4/
√

41
5/
√

41

]
.

f. The mapping A is not differentiable at points where u ̸= 0 and v = 0
and at points where u = 0 and v ̸= 0. For instance, if u = 1, we have

A
(

1
v

)
= |v|

√
1 + 2v2.

1.29 a. By the chain rule this is

[Df(t)] =
[
− 1

t + sin t
,

1
t2 + sin(t2)

] [
1
2t

]
=

2t

t2 + sin(t2)
− 1

t + sin t
.

b. We defined f for t > 1, but we will analyze it for all values of t. The
function f is increasing for all t > 0 and decreasing for all t < 0. First let
us see that f increases for t > 0, i.e., that the derivative is strictly positive
for all t > 0. To see this, put the derivative on a common denominator:

The function f tends to −∞ as
t tends to 0. To see this, note that
if s is small, sin s is very close to
s (see the margin note for solution
1.27). So

∫ t2

t

ds
s + sin s

≈
∫ t2

t

ds
2s

=
1
2

(
ln |t2|−ln |t|

)

=
1
2
(2 ln |t|− ln |t|

=
ln |t|

2
.

[Df(t)] =
2t2 + 2t sin t− t2 − sin(t2)

(t2 + sin(t2))(t + sin t)
. (1)

For x > 0, we have x > sinx (try graphing the functions x and sinx), so
for t > 0, the denominator is strictly positive. We need to show that the
numerator is also strictly positive, i.e.,

t2 + 2t sin t− sin(t2) > 0. (2)

For −π < t ≤ π, this is true: for −π < t ≤ π, we know that t and sin t are
both positive or both negative, so 2t sin t > 0, and we have t2 > sin(t2) for
t ̸= 0. (Do not worry about t2 < t for small t; if you set x = t2, the formula
x > sin x still applies for x > 0.)

For t > π, equation (2) is also true: in that case,

t2 + 2t sin t− sin(t2) ≥ t(t + 2 sin t)− 1 ≥ t(π − 2)− 1 > π − 1.

To show that the function is decreasing for t < 0, we must show that
the derivative is negative. For t < 0, the numerator is still strictly positive,
by the argument above. But the denominator is negative: t2 + sin(t2) is
positive, but t + sin t is negative.
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1.30 a. Let f(A) = A3 and g(A) = A−1. Then:

[Df ◦ g(A)]H = [Df(g(A))][Dg(A)]H = [Df(g(A))]

from example 1.8.6︷ ︸︸ ︷
(−A−1HA−1)

= (A−1)2(−A−1HA−1) + (A−1)(−A−1HA−1)(A−1) + (−A−1HA−1)(A−1)2

= −A−3HA−1 −A−2HA−2 −A−1HA−3

b. If f(A) = An and g is A−1 as above, then

[Df(g(A))]H =
n−1∑

i=0

A−iHA−(n−1−i) =
n−1∑

i=0

A−iHAi+1−n,

so:

[D(f ◦ g)(A)]H =
n−1∑

i=0

A−i(−A−1HA−1)Ai+1−n = −
n−1∑

i=0

A−i−1HAi−n

1.31 Set f(A) = A−1 and g(A) = AA⊤ + A⊤A. Then F = f ◦ g, and we
wish to compute

Solution 1.31: Remember (see
example 1.7.18) that we cannot
treat equation (1) as matrix mul-
tiplication. To treat the deriva-
tives of f and g as matrices, we
would have to identify Mat (n, n)
with Rn2

; the derivatives would be
n2×n2 matrices. Instead we think
of the derivatives as linear trans-
formations.

[DF (A)]H = [Df ◦ g(A)]H = [Df(g(A))][Dg(A)]H

= [Df(AA⊤ + A⊤A)] [Dg(A)]H︸ ︷︷ ︸
new increment

for Df

. (1)

The linear terms in H of

g(A + H)− g(A) = (A + H)(A + H)⊤ + (A + H)⊤(A + H)−AA⊤ −A⊤A

are AH⊤ + HA⊤ + A⊤H + H⊤A; this is [Dg(A)]H, which is the new
increment for Df .

We know from proposition 1.7.19 that [Df(A)]H = −A−1HA−1, which
we will rewrite as

[Df(B)]K = −B−1KB−1 (2)

to avoid confusion. We substitute AH⊤ + HA⊤ + A⊤H + H⊤A for the
increment K in equation (2) and g(A) = AA⊤ + A⊤A for B. This gives

[DF (A)]H = [Df(AA⊤ + A⊤A)][Dg(A)]H

= (−AA⊤ + A⊤A)−1

︸ ︷︷ ︸
−B−1

(AH⊤ + HA⊤ + A⊤H + H⊤A)︸ ︷︷ ︸
K

(AA⊤ + A⊤A)−1

︸ ︷︷ ︸
B−1

.

There is no obvious way to simplify this expression.

1.32 a. The only time the partials might not exist is when x, y = 0 (the
numerator and the denominator are differentiable). If x = 0 or y = 0 then
xy = 0 so f(x, y) is constant and so the partials exist and are 0.

b. The only time f might not be differentiable is at the origin (the de-
nominator goes to 0). If x = y ̸= 0 then f(x, y) = 1

2 so f is not differentiable
(or indeed continuous) at the origin.
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1.33 a. Except at the origin, all partials exist by theorem 1.7.9. At the

origin, all partials exist and are 0, since the function vanishes identically

on all three coordinate axes.

b. By theorem 1.8.1, the function is differentiable everywhere except at

the origin. At the origin, the function is not differentiable. In fact, it isn’t

even continuous: the limit

lim
h→0

f

⎛

⎝
t
t
t

⎞

⎠ = lim
h→0

h3

3h4
= lim

h→0

1
3h

does not exist.

1.34

1.35

A2 =
([

a b
c d

])2

=
[

a2 + bc b(a + d)
c(a + d) bc + d2

]

So if we want A2 = 0 we need: a2 = d2 = −bc (a = ±d) and either b = c = 0

or a = −d. If a = d = 0 then one of b or c = 0. If a = d ̸= 0 then b = c = 0

so a = d = 0 so A = 0. If a = −d ̸= 0 then we have c = −a2

b .

If we want A2 = I we need a2 + bc = d2 + bc = 1 (a = ±d) and either

b = c = 0 or a = −d. If a = d = 0 then b = 1
c . If b = c = 0 then a, d = ±1.

If one of b, c ̸= 0 then we have a = −d, c = 1−a2

b .

If we want A2 = −I then we have almost the same. If a = d = 0 then

b = −1
c . If b = c = 0 then a, d = ±i. If one of b, c ̸= 0 then we have a = −d,

c = −1−a2

b .

1.36

1.37 a. This is a case where it is much easier to think of first rotating the

telescope so that it is in the (x, z)-plane, then changing the elevation, then

rotating back. This leads to the following product of matrices:

⎡

⎣
cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

⎤

⎦

⎡

⎣
cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

⎤

⎦

⎡

⎣
cos θ0 sin θ0 0
− sin θ0 cos θ0 0

0 0 1

⎤

⎦

=

⎡

⎣
cos2 θ0 cosϕ− sin2 θ0 cos θ0 sin θ0(cosϕ− 1) − sinϕ cos θ0
cosθ0 sin θ0(cosϕ− 1) cosϕ sin2 θ0 + cos2 θ0 − sin θ0 sinϕ

sinϕ cos θ0 sinϕ sin θ0 cosϕ

⎤

⎦
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You may wonder about the
signs of the sinω terms. Once the
telescope is level, it is pointing in
the direction of the x-axis. You,
the astronomer rotating the tele-
scope, are at the negative x end
of the telescope. If you rotate it
counterclockwise, as seen by you,
the matrix is as we say. On the
other hand, we are not absolutely
sure that the problem is unam-
biguous as stated.

b. It is best to think of first rotating the telescope into the (x, z)-plane,
then rotating it until it is horizontal (or vertical), then rotating it on its own
axis, and then rotating it back (in two steps). This leads to the following
product of matrices:
⎡

⎣
cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

⎤

⎦

⎡

⎣
cosϕ0 0 − sinϕ0

0 1 0
sinϕ0 0 cosϕ0

⎤

⎦

⎡

⎣
1 0 0
0 cosω sinω
0 − sinω cosω

⎤

⎦

⎡

⎣
cosϕ0 0 sinϕ0

0 1 0
− sinϕ0 0 cosϕ0

⎤

⎦

⎡

⎣
cos θ0 sin θ0 0
− sin θ0 cos θ0 0

0 0 1

⎤

⎦ .


