
Solutions for Chapter 2

2.1.1 a.

⎡

⎣
x
y
z

⎤

⎦

⎡

⎣
3 1 −4
0 2 1
1 −3 0

⎤

⎦

⎡

⎣
0
4
1

⎤

⎦
b.

⎡

⎣
3 1 −4 0
0 2 1 4
1 −3 0 1

⎤

⎦ c.

⎡

⎣
1 −7 2 1
1 −3 0 2
2 −2 0 −1

⎤

⎦

2.1.2 a.

⎡

⎣
0 3 −1 0
−2 1 2 0

1 0 −5 0

⎤

⎦ row reduces to

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦.

b.

⎡

⎣
2 3 −1 1
0 −2 1 2
1 0 −2 −1

⎤

⎦ row reduces to

⎡

⎣
1 0 0 5/3
0 1 0 −1/3
0 0 1 4/3

⎤

⎦

2.1.3

a.
[

1 2 3
4 5 6

]
→
[

1 0 −1
0 1 2

]
b.

⎡

⎣
1 −1 1
−1 0 2
−1 1 1

⎤

⎦→

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

c.

⎡

⎣
1 2 3 5
2 3 0 −1
0 1 2 3

⎤

⎦→

⎡

⎣
1 0 0 1
0 1 0 −1
0 0 1 2

⎤

⎦

d.

⎡

⎣
1 3 −1 4
1 2 1 2
3 7 1 9

⎤

⎦→

⎡

⎣
1 0 5 −2
0 1 −2 2
0 0 0 1

⎤

⎦

e.

⎡

⎣
1 1 1 1
2 −3 3 3
1 −4 2 2

⎤

⎦→

⎡

⎣
1 0 6/5 6/5
0 1 −1/5 −1/5
0 0 0 0

⎤

⎦

2.1.4 Consider the following sequence of four row operations:
• Add row i to row j;
• Subtract row j from row i;
• Add row i to row j;
• Multiply row i by −1.
If we denote row i by ri and row j by rj , this leads to

ri
rj
#→ ri

rj + ri
#→ −rj

ri + rj
#→ −rj

ri
#→ rj

ri
.

Clearly we have exchanged row i and row j.
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2.1.5 You can undo “multiplying row i by m ̸= 0” by “multiplying row i
by 1/m” (which is possible because m ̸= 0; see definition 2.1.1).

You can undo “adding row i to row j” by “subtracting row i from row
j,” i.e., “adding (−row i) to row j”.

You can undo “switching row i and row j” by “switching row i and row
j” again.

2.1.6 a. The original matrix corresponds to the set of equations

2x + y + 3z = 1

x− y = 1

2x + z = 1,

with solutions x = 1/3, y = −2/3, z = 1/3 since the matrix row reduces to⎡

⎣
1 0 0 1/3
0 1 0 −2/3
0 0 1 1/3

⎤

⎦.

The various row operations correspond to the systems of equations

(i)

2x + y + 3z = 1

2x− 2y = 2

2x + z = 1.

(ii)

x− y = 1

2x + y + 3z = 1

2x + z = 1,

(iii)

x− y = 1

2x + y + 3z = 1

2y + z = −1.

The solutions remain unchanged.
b. The various column operations correspond to the systems of equations

(i)

2x + 2y + 3z = 1

x− 2y = 1

2x + z = 1.

(ii)

x + 2y + 3z = 1

−x + y = 1

2y + z = 1

(ii)

2x + y + z = 1

x− y + 2z = 1

2x + z = 1.

For (i), the solutions are x = 1/3, y = −1/3, z = 1/3; i.e., the solution for
y is half the original solution.

For (ii), the solutions are x = −2/3, y = 1/3, z = 1/3; i.e., x and y have
changed places.

For (iii), the solutions are x = 1/3, y = 0, z = 1/3. It is rather hard to
visualize what has happened. If the original system of equations was

xa⃗1 + ya⃗2 + za⃗3 = b⃗,

then the new one is

ua⃗1 + va⃗2 + w(a⃗3 − 2a⃗2) = b⃗, i.e. ua⃗1 + (v − 2w)a⃗2 + wa⃗3 = b⃗.

Clearly u = x, w = z, v = y + 2w = y + 2z is a solution to this (in terms
of the solution to the original system of equations), and that is what we
found.

2.1.7 Switching rows 2 and 3 of the matrix

⎡

⎣
1 0 0 2
0 0 1 −1
0 1 0 1

⎤

⎦ brings it to

echelon form, giving

⎡

⎣
1 0 0 2
0 1 0 1
0 0 1 −1

⎤

⎦ .
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The matrix

⎡

⎣
1 1 0 1
0 0 2 0
0 0 0 1

⎤

⎦ can be brought to echelon form by multiply-

ing row 2 by 1/2, giving

⎡

⎣
1 1 0 1
0 0 1 0
0 0 0 1

⎤

⎦ .

The matrix

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ can be brought to echelon form by switching

first the first and second rows, then the second and third rows:
⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦→

⎡

⎣
1 0 0
0 0 0
0 1 0

⎤

⎦→

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ .

The matrix

⎡

⎣
0 1 0 3 0 −3
0 0 −1 1 1 1
0 0 0 0 1 2

⎤

⎦ can be brought to echelon form

by multiplying row 2 through by −1, then adding row 3 to row 2:
⎡

⎣
0 1 0 3 0 −3
0 0 −1 1 1 1
0 0 0 0 1 2

⎤

⎦→

⎡

⎣
0 1 0 3 0 −3
0 0 1 −1 −1 −1
0 0 0 0 1 2

⎤

⎦→

⎡

⎣
0 1 0 3 0 −3
0 0 1 −1 0 1
0 0 0 0 1 2

⎤

⎦ .

2.1.8 Suppose that A is an n × n matrix. If Ã is not the identity, then
there is a first diagonal term which is 0. The column containing that term
has no pivotal 1, and since there are at most n pivotal 1’s (at most one per
row), there is some row that contains no pivotal 1. Since the first nonzero
element of any row must be a pivotal one, that means that there is a row
of 0’s. Any row beneath a row of 0’s must be a row of 0’s, so the bottom
row must be a row of 0’s.

2.1.9 The first problem occurs when you subtract 2 · 1010 from 1 to get
from the second to the third matrix of equation 2.1.12 (second row, second
entry). The 1 is “invisible” if computing only to 10 significant digits, and
disappears in the subtraction: 1− 20000000000 = −19999999999, which to
10 significant digits is −20000000000. Another “invisible” 1 is found in the
second row, third entry.

Solution 2.1.9: This is the main
danger in numerical analysis: add-
ing (or subtracting) numbers of
very different sizes loses precision.

2.2.1 a. The augmented matrix [A, b⃗] corresponds to

2x + y + 3z = 1

x− y = 1

x + y + 2z = 1.

Since [A, b⃗] row reduces to
⎡

⎣
1 0 1 0
0 1 1 0
0 0 0 1

⎤

⎦ ,
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x and y are pivotal unknowns, and z is a nonpivotal unknown.
b. If we list first the variable y, then z, then x, the system of equations

becomes
y + 3z + 2x = 1
−y + x = 1

y + 2z + x = 1.

The corresponding matrix is
⎡

⎣
1 3 2 1
−1 0 1 1

1 2 1 1

⎤

⎦ , which row reduces to

⎡

⎣
1 0 −1 0
0 1 1 0
0 0 0 1

⎤

⎦ .

This time y and z are the pivotal variables, and x is the nonpivotal variable.

2.2.2 a. We have the intersection of three planes, two of which are parallel
to different coordinate axes, and the third of which is parallel to none. So
there is a unique solution. Indeed, row reduction gives

⎡

⎣
1 0 0 1
0 1 0 0
0 0 1 3

⎤

⎦ so x = 1, y = 0, z = 3.

b. These are three planes that intersect in a point, so there is a unique
solution. Indeed,

⎡

⎣
1 −2 −12 12
2 2 2 4
2 3 4 3

⎤

⎦ row reduces to

⎡

⎣
1 0 0 2
0 1 0 1
0 0 1 −1

⎤

⎦ .

c. Row reduction gives

⎡

⎣
1 0 0 4.5
0 1 1 .5
0 0 0 0

⎤

⎦, so there are infinitely many

solutions, one for every choice of value for z.

d. Row reduction gives

⎡

⎣
1 0 −2 0
0 1 1 0
0 0 0 1

⎤

⎦, so there is no solution.

e. We guess (in fact we know, since the equations are certainly compati-
ble, the zero vector is a solution) that we will get infinitely many solutions
(four equations in five unknowns). Indeed, the matrix
⎡

⎢⎣

1 2 1 −4 1 0
1 2 −1 2 −1 0
2 4 1 −5 1 0
1 2 3 −10 2 0

⎤

⎥⎦ row reduces to

⎡

⎢⎣

1 2 0 −1 0 0
0 0 1 −3 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎤

⎥⎦ .

We can read off the solution: the variables y and w are nonpivotal, so
they can be chosen freely, and the others are expressed in terms of those by

x = −2y + w

z = 3w

v = 0.
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2.2.3 a. Call the equations A, B, C, D. Adding A and B gives
2x + 4y − 2w =0; comparing this with C gives −2w = z − 5w + v, so

3w = z + v. (1)

Comparing C and 2D gives 15w = 5z + 3v, which is compatible with
equation (1) only if v = 0. So equation (1) gives 3w = z.

Substituting 0 for v and 3w for z in each of the four equations gives
z + 2y − w = 0.

b. Since you can choose arbitrarily the value of y and w, and they
determine the values of the other variables, the family of solutions depends
on two parameters.

2.2.4 For one equation in two unknowns, the simplest (and only) solution
is 0x + 0y = 1.

2.2.5 a. This system has a solution for every value of a. If you row reduce

the matrix
[

a 1 0 2
0 a 1 3

]
you may seem to get

[
1 0 −1/a2 −

(
2/a + 3/a2

)

0 1 1/a 3/a

]
,

which seems to indicate that there is a solution for any value of a except
a = 0. However, obviously the system has a solution if a = 0; in that case,
y = 2 and z = 3. The problem with the above row reduction is that if
a = 0, it can’t be used for a pivotal 1. If a = 0 the matrix row reduces to[

0 1 0 2
0 0 1 3

]
.

b. We have two equations in three unknowns; there is no unique solution.

2.2.6 a. There is a solution for every value of a except a = −6. In the

course of row reducing the matrix
[

2 a 1
1 −3 a

]
, we must multiply by

−2
6 + a

,

which is not possible if a = −6. If we continue with the row reduction, we

get

⎡

⎢⎣
1 0

6− a2

2(6 + a)

0 1
1− 2a

6 + a

⎤

⎥⎦, which is meaningless when a = −6.

b. Since the first two columns of the matrix row reduce to the identity,
then whenever a solution exists (whenever a ̸= −6), the solution is unique:

x =
6− a2

2(6 + a)
and y =

1− 2a

6 + a
.

2.2.7 We can perform row operations to bring

⎡

⎣
1 1 2 1
1 −1 a b
2 0 −b 0

⎤

⎦ to

⎡

⎣
1 0 (2 + a)/2 (1 + b)/2
0 1 (2− a)/2 (1− b)/2
0 0 2 + a + b 1 + b

⎤

⎦ .
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a. There are then two possibilities. If a + b + 2 ̸= 0, the first three
columns row reduce to the identity, and the system of equations has the
unique solution

x =
b(b + 1)
2 + a + b

, y =
−b2 − 3b + 2a

2 + a + b
, x =

1 + b

2 + a + b
.

If a+ b+2 = 0, then there are two possibilities to consider: either b+1 = 0
or b + 1 ̸= 0. If b + 1 = 0, so that a = b = −1, the matrix row reduces to

⎡

⎣
1 0 1/2 0
0 1 3/2 1
0 0 0 0

⎤

⎦ .

In this case there are infinitely many solutions: the only nonpivotal variable
is z, so we can choose its value arbitrarily; the others are x = −z/2 and
y = 1− (3z)/2. If a + b + 2 = 0 and b + 1 ̸= 0, then there is a pivotal 1 in
the last column, and there are no solutions.

b. The first case, where a + b + 2 ̸= 0, corresponds to an open subset
of the (a, b)-plane. The second case, where a = b = −1, corresponds to a
closed set. The third is neither open nor closed.

2.2.8 a. The system of equations has a solution for all values of a. In row
reducing

⎡

⎣
1 1 a 1
1 a 1 1
a 1 1 a

⎤

⎦ to

⎡

⎣
1 0 0 1
0 1 0 0
0 0 1 0

⎤

⎦ ,

there is first a step where one must divide by a− 1 and then a step where
one must divide by 2−a−a2. Thus the row reduction does not apply when
a = 1 and a = −2. The row reduction says that there is a solution (in
fact, unique solution) for every value of a except a = 1 and a = −2; that
solution is x = 1, y = z = 0. When a = 1, the augmented matrix is

⎡

⎣
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎦ , which row reduces to

⎡

⎣
1 1 1 1
0 0 0 0
0 0 0 0

⎤

⎦ .

There are no pivotal ones in the last column, so the system does have
solutions; in fact, the second and third are nonpivotal, so that y and z can
be chosen arbitrarily, and the x = 1− y − z.

Similarly in the case where a = −2, the augmented matrix is
⎡

⎣
1 1 −2 1
1 −2 1 1
−2 1 1 −2

⎤

⎦ , which row reduces to

⎡

⎣
1 0 −1 1
0 1 −1 0
0 0 0 0

⎤

⎦ .

The system does have roots; you can choose z arbitrarily, and then x =
1 + z, y = z.

b. As discussed in part a, the system has a unique solution for every
value of a except a = 1 and a = −2. For those values there are infinitely
many solutions: if a = 1, each of the three equations becomes x+y+z = 1:
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one equation in three unknowns. If a = −2, the equations correspond to

the matrix

⎡

⎣
1 1 −2 1
1 −2 1 1
−2 1 1 −2

⎤

⎦, which row reduces to

⎡

⎣
1 0 −1 1
0 1 −1 0
0 0 0 0

⎤

⎦,

case 2b of theorem 2.2.1.

2.2.9 Row reducing

⎡

⎢⎣

1 −1 −1 −3 1 1
1 1 −5 −1 7 2
−1 2 2 2 1 0
−2 5 −4 9 7 β

⎤

⎥⎦ gives

⎡

⎢⎣

1 0 0 −4 3 2
0 1 0 −1/3 7/3 5/6
0 0 1 −2/3 −1/3 1/6
0 0 0 0 0 β + 1/2

⎤

⎥⎦

There are then two possibilities: either β ̸= 1/2, and there will then be a
pivotal 1 in the last column (once we have divided by β + 1/2), so there
is in that case no solution. If on the other hand β = −1/2, then there are
infinitely many solutions: x4 and x5 are nonpivotal, so their values can be
chosen arbitrarily, and then the values of x1, x2 and x3 are given by

x1 = 2 + 4x4 − 3x5

x2 = 5/6 + x4/3− 7x5/3

x3 = 1/6 + 2x4/3 + x5/3.

2.2.10 Since f is invertible with differentiable inverse, we have the two
compositions f−1 ◦f : Rn → Rn and f ◦f−1 : Rm → Rm, whose derivatives
are the identity matrix. By the chain rule, these derivatives are

[D(f ◦ f−1)(y)] = [Df(f−1(y))][Df−1(y)] = I

[D(f−1 ◦ f)(x)] = [Df−1(f(x))][Df(x)] = I.

Since f(x) = y we can write [Df−1(y)] = [Df−1(f(x))]; the first equation
says that this n×m matrix has a left inverse and the second equation says
that it has a right inverse. Therefore it is square and n = m.

2.2.11 a. R(1) = 1 + 1/2− 1/2 = 1, R(2) = 8 + 2− 1 = 9.
If we have one equation in one unknown, we need to perform one division.

If we have two equations in two unknowns, we need two divisions to get
a pivotal 1 in the first row (the 1 is free), followed by two multiplications
and two additions to get a 0 in the first element of the second row (the 0 is
free). One more division, multiplication and addition get us a pivotal 1 in
the second row and a 0 for the second element of the first row for a total
of nine.
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k

n

n+1

k

Figure for solution 2.2.11,
part b: This n × (n + 1) matrix
represents a system Ax⃗ = b⃗ of
n equations in n unknowns. By
the time we are ready to obtain
a pivotal 1 at the intersection of
the kth column (dotted) and kth
row, all the entries on the kth row
to the left of the kth column are
0, so we only need to place a 1 in
position k, k and then justify that
act by dividing all the entries on
the kth row to the right of kth
column by the (k, k) entry. There
are n + 1− k such entries.

If the (k, k) entry is 0, we go

down the kth column until we find

a nonzero entry. In computing

the total number of computations,

we are assuming the worse case

scenario, where all entries of the

kth column are nonzero.

b. As illustrated by the figure in the margin, we need n+1−k divisions
to obtain a pivotal 1 in the column k. To obtain a 0 in another entry of
column k requires n + 1 − k multiplications and n + 1 − k additions. We
need to do this for n− 1 entries of column k. So our total is

(n + 1− k) + 2(n− 1)(n + 1− k) = (2n− 1)(n− k + 1).

c. For n = 1, we have (2 − 1)(1 − 1 + 1) = 1 = 13 + 12

2 −
1
2 , so the

relationship is true for n = 1. If the relation is true for n, then
n+1∑

k=1

(
2(n + 1)− 1

)(
(n + 1)− k + 1

)
=

n+1∑

k=1

(2n + 1)(n− k + 2)

= 2n + 1 +
n∑

k=1

(
(2n− 1)(n− k + 1) + (4n− 2k + 3)

)

= 3n2 + 4n + 1 +
n∑

k=1

(2n− 1)(n− k + 1)

= 3n2 + 4n + 1 + n3 +
n2

2
− n

2
= (n + 1)3 +

(n + 1)2

2
− n + 1

2
.

So by recursion, the relation is true for all n ≥ 1.
d.

Q(1) =
2
3

+
3
2
− 7

6
= 1,

Q(2) =
2
3
8 +

3
2
4− 7

6
2 = 9,

Q(3) =
2
3
27 +

3
2
9− 7

6
9 = 28.

Since R(n)−Q(n) = 1
3n3−n2 + 2

3n, which is a cubic with a root at n = 2.
Its derivative, which is n2 − 2n + 2

3 , has roots at 1 ±
√

1/3; in particular,
it is strictly positive for n ≥ 2. So the function R(n) − Q(n) is increasing
as a function of n for n ≥ 2, and hence is strictly positive for n ≥ 3.

e. For partial row reduction for a single column, the operations needed
are like those for full row reduction (part b) except that we are just putting
zeros below the diagonal, so we can replace n − 1 in the total for full row
reduction by n− k, to get

(n + 1− k) + 2(n− k)(n + 1− k) = (n− k + 1)(2n− 2k + 1)

total operations (divisions, multiplications, and additions).
f. Denote by P (n) the total computations needed for partial row reduc-

tion. By part e, we have

P (n) =
n∑

k=1

(n− k + 1)(2n− 2k + 1).

Let

P1(n) =
2
3
n3 +

1
2
n2 − 1

6
n.
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We will show by induction that P = P1.
Clearly, P (1) = P1(1) = 1. If P (n) = P1(n), we get:

The 1 at the beginning of the
second line of this equation is the
contribution from k = n + 1.

In the third line, we get the
next-to-last term using

n∑

k=1

k =
n(n + 1)

2
.

P (n + 1) =
n+1∑

k=1

(n− k + 2)(2n− 2k + 3)

= 1 +
n∑

k=1

(n− k + 1)(2n− 2k + 1)

︸ ︷︷ ︸
P (n)

+
n∑

k=1

(4n− 4k + 5)

= 1 +
2
3
n3 +

1
2
n2 − 1

6
n

︸ ︷︷ ︸
P1(n) by inductive hypothesis

+4n2 − 4
n2 + n

2
+ 5n

=
2
3
(n + 1)3 +

1
2
(n + 1)2 − 1

6
(n + 1) = P1(n + 1).

So the relation is true for all n ≥ 1.
g. We need n − k multiplications and n − k additions for the row k, so

the total number of operations for back substitution is B(n) = n2 − n.
h. So the total number of operations for n equations in n unknowns is

Q(n) = P (n) + B(n) =
2
3
n3 +

3
2
n2 − 7

6
n for all n ≥ 1.

2.3.1 The inverse of A is A−1 =

⎡

⎣
3 −1 −4
1 −1 −1
−2 1 3

⎤

⎦. Now compute

⎡

⎣
3 −1 −4
1 −1 −1
−2 1 3

⎤

⎦

⎡

⎣
1 2 0
1 0 1
1 1 1

⎤

⎦ =

⎡

⎣
−2 2 −5
−1 1 −2

2 −1 4

⎤

⎦ .

The columns of the product are the solutions to the three systems we were
trying to solve.

2.3.2

a.
[

1 −5
9 9

]−1

=
1
54

[
9 5
−9 1

]
. b. The matrix

[
1 3
3 9

]
is not invertible:

subtracting 3 times the first row from the second row gives
[

1 3
0 0

]
.

c.

⎡

⎣
1 2 3
2 3 0
0 1 2

⎤

⎦
−1

=

⎡

⎣
3/2 −1/4 −9/4
−1 1/2 3/2
1/2 −1/4 −1/4

⎤

⎦ .

d. This matrix is not invertible: it is not square.

e.

⎡

⎣
3 2 −1
0 1 1
8 3 9

⎤

⎦
−1

=

⎡

⎣
1/7 −1/2 1/14
4/21 5/6 −1/14
−4/21 1/6 1/14

⎤

⎦ (f)

⎡

⎣
1 0 1
2 1 −1
1 1 −1

⎤

⎦
−1

=

⎡

⎣
0 1 −1
1 −2 3
1 −1 1

⎤

⎦ .
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g.

⎡

⎢⎣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎤

⎥⎦

−1

=

⎡

⎢⎣

4 −6 4 −1
−6 14 −11 3

4 −11 10 −3
−1 3 −3 1

⎤

⎥⎦

2.3.3 a. Let A be an n ×m matrix. Let us first see that saying that A
is invertible is the same as saying that the equation Ax⃗ = b⃗ has a unique
solution for every b⃗ ∈ Rn. Our definition of invertible is that A is invertible
if there exists B such that AB = In and BA = Im. If you multiply through
Ax⃗ = b⃗ from the left by B, you find

x⃗ = BAx⃗ = Bb⃗,

indicating that Bb⃗ is the only possible solution. But is it a solution? Yes:
A(Bb⃗) = (AB)b⃗ = b⃗.

Now apply theorem 2.2.1 to see when the system of m equations in m
variables Ax⃗ = b⃗ has a unique solution for every b⃗ ∈ Rn. The matrix A
cannot have any nonpivotal columns, so A cannot have more columns than
rows, i.e., we must have n ≤ m. But if n < m, then Ã will definitely have
a row of 0’s, so there will be b⃗’s for which Ax⃗ = b⃗ has no solutions. Thus
n = m.

b. For instance,

[
1 0 0
0 1 0

]⎡

⎣
1 0
0 1
0 0

⎤

⎦ =
[

1 0
0 1

]
, but

⎡

⎣
1 0
0 1
0 0

⎤

⎦
[

1 0 0
0 1 0

]
=

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ .

2.3.4 a. A =

⎡

⎣
2 1 3 a
1 −1 1 b
1 1 2 c

⎤

⎦− >

⎡

⎣
1 0 0 3a− b− 4c
0 1 0 a− b− c
0 0 1 −2a + b + 3c

⎤

⎦ = C

b. B−1 =

⎡

⎣
2 1 3
1 −1 1
1 1 2

⎤

⎦
−1

=

⎡

⎣
3 −1 −4
1 −1 −1
−2 1 3

⎤

⎦

c. Multiplying A on the left by B−1 results in [ I3 h⃗ ] where h⃗ is the
last column of C.

2.3.5 a. Since A =

⎡

⎣
3 −1 3 1
2 1 −2 1
1 1 1 1

⎤

⎦ row reduces to

⎡

⎣
1 0 0 3/8
0 1 0 1/2
0 0 1 1/8

⎤

⎦,

the solution is x = 3/8, y = 1/2, z = 1/8.

b. Since

⎡

⎣
3 −1 3 1 0 0
2 1 −2 0 1 0
1 1 1 0 0 1

⎤

⎦ row reduces to

⎡

⎣
1 0 0 3/16 1/4 −1/16
0 1 0 −1/4 0 3/4
0 0 1 1/16 −1/4 5/16

⎤

⎦ , we have
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A−1 =

⎡

⎣
3/16 1/4 −1/16
−1/4 0 3/4
1/16 −1/4 5/16

⎤

⎦ and

⎡

⎣
3/16 1/4 −1/16
−1/4 0 3/4
1/16 −1/4 5/16

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ =

⎡

⎣
3/8
1/2
1/8

⎤

⎦ .

2.3.6 a. Let us row reduce:

⎡

⎣
1 −2 4
0 5 −5
3 a b

⎤

⎦ →

⎡

⎣
1 −2 4
0 5 −5
0 a + 6 b− 12

⎤

⎦ →

⎡

⎣
1 0 2
0 1 −1
0 0 a + b− 6

⎤

⎦ .

At this point, we see that the matrix is invertible if and only if a + b ̸= 6,

since in that case it row reduces to the identity.

b. Row reduce again:

⎡

⎣
1 −2 4 1 0 0
0 5 −5 0 1 0
3 a b 0 0 1

⎤

⎦ →

⎡

⎣
1 −2 4 1 0 0
0 5 −5 0 1 0
0 a + 6 b− 12 −3 0 1

⎤

⎦ →

⎡

⎣
1 0 2 1 2/5 0
0 1 −1 0 1/5 0
0 0 a + b− 6 −3 −(a + 6)/5 1

⎤

⎦ →

⎡

⎣
1 0 0 (a + b)/(a + b− 6) 2(2a + b)/(5(a + b− 6)) −2/(a + b− 6)
0 1 0 −3/(a + b− 6) (b− 12)/(5(a + b− 6)) 1/(a + b− 6)
0 0 1 −3/(a + b− 6) −(a + 6)/(5(a + b− 6)) 1/(a + b− 6)

⎤

⎦ .

This gives the inverse:

1
a + b− 6

⎡

⎣
a + b 2(2a + b)/5 −2
−3 (b− 12)/5 1
−3 −(a + 6)/5 1

⎤

⎦ .

2.3.7 It just so happens that A = A−1:

⎡

⎣
1 −6 3
2 −7 3
4 −12 5

⎤

⎦
2

=

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . So by proposition 2.3.1, the solution is

x⃗ = A−1

⎡

⎣
5
7
11

⎤

⎦ = A

⎡

⎣
5
7
11

⎤

⎦ =

⎡

⎣
−4
−6
−9

⎤

⎦ .
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2.3.8 a. The products are

(1)

⎡

⎣
1 0 −1
6 3 3
0 1 2

⎤

⎦ the 2nd row is multiplied by 3

(2)

⎡

⎣
1 0 −1
0 1 2
2 1 1

⎤

⎦ the 2nd and 3rd rows are switched

(3)

⎡

⎣
1 0 −1
2 1 1
2 1 0

⎤

⎦ twice the 1st row is added to the 3rd.

b. (We use here the format for matrix multiplication introduced in sec-

tion 1.2.)

⎡

⎣
1 0 −1
2 1 1
0 1 2

⎤

⎦

⎡

⎣
1 0 0
0 3 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −1
6 3 3
0 1 2

⎤

⎦
,

⎡

⎣
1 0 −1
2 1 1
0 1 2

⎤

⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
1 0 −1
0 1 2
2 1 1

⎤

⎦
,

⎡

⎣
1 0 −1
2 1 1
0 1 2

⎤

⎦

⎡

⎣
1 0 0
0 1 0
2 0 1

⎤

⎦

⎡

⎣
1 0 −1
2 1 1
2 1 0

⎤

⎦

c. In this case the products are

⎡

⎣
1 0 −1
2 3 1
3 3 2

⎤

⎦ the second column is multiplied by 3

⎡

⎣
1 −1 0
2 1 1
0 2 1

⎤

⎦ the second and third columns are switched

⎡

⎣
−1 0 −1

4 1 1
4 1 2

⎤

⎦ twice the third column is added to the first.

Multiplying out gives the same result:

⎡

⎣
1 0 0
0 3 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −1
2 1 1
0 1 2

⎤

⎦

⎡

⎣
1 0 −1
2 3 1
3 3 2

⎤

⎦
,

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
1 0 −1
2 3 1
0 3 2

⎤

⎦

⎡

⎣
1 −1 0
2 1 1
0 2 1

⎤

⎦
,

⎡

⎣
1 0 0
0 1 0
2 0 1

⎤

⎦

⎡

⎣
1 0 −1
2 1 1
0 1 2

⎤

⎦

⎡

⎣
−1 0 −1

4 1 1
4 1 2

⎤

⎦ .
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2.3.9 a. The products will be
⎡

⎣
−2 3 −14

0 2 3
1 0 4

⎤

⎦ 3 times the third row is subtracted from the first

⎡

⎣
1 3 −2
0 4 6
1 0 4

⎤

⎦ the second row is multiplied by 2

⎡

⎣
1 3 −2
1 0 4
0 2 3

⎤

⎦ the second and third rows are switched.

b.
⎡

⎣
1 3 −2
0 2 3
1 0 4

⎤

⎦

⎡

⎣
1 0 −3
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−2 3 −14

0 2 3
1 0 4

⎤

⎦

,

⎡

⎣
1 3 −2
0 2 3
1 0 4

⎤

⎦

⎡

⎣
1 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
1 3 −2
0 4 6
1 0 4

⎤

⎦

,

⎡

⎣
1 3 −2
0 2 3
1 0 4

⎤

⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
1 3 −2
1 0 4
0 2 3

⎤

⎦ .

2.3.10 a. Clearly, E2(i, j, x)A will have the same rows as A except for the
ith. The ith row of E2(i, j, x)A is the sum of the ith row of A, contributed
by the 1 in position (i, i), and of x times the jth row of A, contributed by
the x in position (i, j).

b. The rows of E3(i, j)A are those of A, except for the ith. The ith
row of E3(i, j)A is the jth row of A, contributed by the 1 in the (i, j)th
position, and similarly the jth row of E3(i, j)A is the ith row of A

2.3.11 Let A be an n×m matrix. Then

AE1(i, x) has the same columns as A, except the ith, which is multiplied
by x.

AE2(i, j, x) has the same columns as A except the jth, which is the sum
of the jth column of A (contributed by the 1 in the (j, j)th position), and
x times the ith column (contributed by the x in the (i, j)th position).

AE3(i, j) has the same columns as A, except for the ith and jth, which
are switched.

2.3.12 The k, lth entry of E1(i, x)E1(i, 1/x) is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e⃗k · e⃗l = 0 if k, l ̸= i and k ̸= l

e⃗k · e⃗k = 1 if k, l ̸= i and k = l

xe⃗i · e⃗l = 0 if k = i, l ̸= i

e⃗k · (1/x)⃗ei = 0 if k ̸= i, l = i

xe⃗i · (1/x)⃗ei = 1 if k = l = i.
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These are the entries of the identity matrix.
Now for E2(i, j, x). Let us set this up in our standard way:

i j⎡

⎢⎢⎢⎣

1 −x

0 1

⎤

⎥⎥⎥⎦

i

j

⎡

⎢⎢⎢⎣

1 x

0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 −x + x

0 1

⎤

⎥⎥⎥⎦

Finally, let us check for E3(i, j). Again, just set up the multiplication:

i j⎡

⎢⎢⎢⎣

0 1

1 0

⎤

⎥⎥⎥⎦

i

j

⎡

⎢⎢⎢⎣

0 1

1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0

0 1

⎤

⎥⎥⎥⎦

2.3.13 Here is one way to show this. Denote by a the ith row and by b
the jth row of our matrix. Assume we wish to switch the ith and the jth
rows. Then multiplication on the left by E2(i, j, 1) turns the ith row into
a+ b. Multiplication on the left by E2(j, i,−1) then by E1(j,−1) turns the
jth row into a. Finally, we multiply on the left by E2(i, j,−1) to subtract a
from the ith row, making that row b. So we can switch rows by multiplying
with only the first two types of elementary matrices.

Here is a different explanation of the same argument: Compute the
product

[
1 −1
0 1

] [
1 0
0 −1

] [
1 0
−1 1

] [
1 1
0 1

]
=
[

0 1
1 0

]
.

This certainly shows that the 2 × 2 elementary matrix E3(1, 2) can be
written as a product of elementary matrices of type 1 and 2.

More generally,

E2(i, j,−1)E1(j,−1)E2(j, i,−1)E2(i, j, 1) = E3(i, j).

2.3.14 a. First multiply on the left by a type 2 elementary matrix to add
−4 times the 1st (jth) row to the 2nd (ith row). Second, multiply by a
type 1 elementary matrix to multiply the second (ith) row by −1/3; third,
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multiply again by a type 2 elementary matrix to add −2 times the 2nd

(jth) row to the 1st (ith) row:

[
1 2 3
4 5 6

]

[
1 0
−4 1

] [
1 2 3
0 −3 −6

]

[
1 0
0 −1/3

] [
1 2 3
0 1 2

]

[
1 −2
0 1

] [
1 0 −1
0 1 2

]

(We use here the format for repeated multiplication already used in Section

1.2.)

b. To save on tedium, first we multiply by a modified type 2 matrix

to add 1 times the first row to both the second and third rows. Next, we

multiply by a type 1 elementary matrix to multiply the second (ith) row by

−1. Third, we add 1 times the 2nd (jth) row to the 1st (ith) row, using a

type 2 elementary matrix. Fourth, we multiply the third row by 1/2 using

a type 1 elementary matrix. Last, we use a modified type 2 matrix to add

2 times the 3rd row to the 1st row, and 3 times the 3rd row to the 2nd row:

⎡

⎣
1 −1 1
−1 0 2
−1 1 1

⎤

⎦

⎡

⎣
1 0 0
1 1 0
1 0 1

⎤

⎦

⎡

⎣
1 −1 1
0 −1 3
0 0 2

⎤

⎦

⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦

⎡

⎣
1 −1 1
0 1 −3
0 0 2

⎤

⎦

⎡

⎣
1 1 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −2
0 1 −3
0 0 2

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

2

⎤

⎦

⎡

⎣
1 0 −2
0 1 −3
0 0 1

⎤

⎦

⎡

⎣
1 0 2
0 1 3
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

. c.

⎡

⎣
1 2 3 5
2 3 0 −1
0 1 2 3

⎤

⎦

⎡

⎣
1 0 0
−2 1 0

0 0 1

⎤

⎦

⎡

⎣
1 2 3 5
0 −1 −6 −11
0 1 2 3

⎤

⎦

⎡

⎣
1 2 0
0 1 0
0 1 1

⎤

⎦

⎡

⎣
1 0 −9 −17
0 −1 −6 −11
0 0 −4 −8

⎤

⎦

⎡

⎣
1 0 0
0 −1 0
0 0 −1

4

⎤

⎦

⎡

⎣
1 0 −9 −17
0 1 6 11
0 0 1 2

⎤

⎦

⎡

⎣
1 0 9
0 1 −6
0 0 1

⎤

⎦

⎡

⎣
1 0 0 1
0 1 0 −1
0 0 1 2

⎤

⎦

.


