The final exam is on Monday May 7, 12:00-3:00pm in Vincent Hall 211.
The questions from 6.10 are transferred to this week from Assignment 13. Note that the extra question from Assignment 13 is not transferred.

Assignment 14 - Do not hand this in to be graded, even though some questions are starred. These questions are just to show you what I would suggest.

Read: Hubbard and Hubbard Sections 6.11 and 6.13.

Exercises:

Section 6.10: 1, 2*, $3^{*}, 4,5,6,10$.
Section 6.11: $1^{*}, 2,4,5^{*}, 6^{*}, 7,8,9,10,11,12$ (use the hint), 13,14 .
For question 1 , the volume of a torus in that question is $4 \pi^{2}$.
The way I see to do question 3 it is a standard result to do with centers of mass, which we have not done; thus I omit this question.
Section 6.13: We have already done questions like 1 and 2 , and I am going to steer clear of things like questions 3 and 7 which go into physics. The only useful questions from this section are 1,2, 4.

Extra Question*: Let B be the half of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ in 3-dimensional space specified by $z \geq 0$. Let S be the surface which is the boundary of B, so S is the union of a unit disc D in the xy-plane and the upper half T of the surface of a sphere. Let S, T and D be oriented by the normal pointing outward from B . By calculating integrals over D and B , compute the flux of F through T , where F is the vector field
$F\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x+\cos y+\cos z \\ y+\sqrt{x^{2}+1} \ln \left(z^{2}+1\right) \\ z+3\end{array}\right)$

Comments: If there remains sufficient time I will discuss Newton's theorem about the gravitational field around a spherically symmetric body (not in the book). There will also be a review sheet for the final exam forthcoming.

This has been a great year and it has been a real pleasure and a privilege to teach you!

