Math 3593 Practice for the final exam.

The final exam is 12:00-3:00 pm Monday, May 7, 2018 in Vincent 211. You will **not** be allowed to use books, notes or a calculator on this exam. At the top of the exam you will be given the following formulas:

Formulas Surface area of a sphere: $4\pi r^2$. Volume of a sphere: $\frac{4}{3}\pi r^3$.

Polar coordinates: $x = r \cos \theta$, $y = r \sin \theta$; $dx dy = r dr d\theta$.

Cylindrical coordinates: $x = r \cos \theta$, $y = r \sin \theta$, z = z; $dx dy dz = r dr d\theta dz$.

Spherical polars: $x = r \cos \phi \cos \theta$, $y = r \cos \phi \sin \theta$, $z = r \sin \phi$; $dx dy dz = r^2 \cos \phi dr d\phi d\theta$.

The first seven (at least) of the following questions you have seen recently. I leave them there just to remind you. Be sure to look also at the review sheets for the other exams.

- 1. Prove that a subset of a set of volume zero has volume zero.
- 2. Find the surface area of the part of the graph of the function $z=y^2-x^2$ which lies above the circle $x^2+y^2\leq 1$ in the xy-plane.
- 3. Let A be the unit circle $x^2 + y^2 \le 1$ and let $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation given by $\Phi \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x y \end{pmatrix}$. Find the area of $\Phi(A)$.
- 5. Find the length of the part of the helical spiral in \mathbb{R}^3 , specified in cylindrical polar coordinates (r, θ, z) by r = 2, $z = 3\theta$, for which $0 \le \theta \le 2\pi$.
- 6. Find the area of the plane elliptical region which is the part of the plane z=4-x-2y that lies above the circle $x^2+y^2\leq 1$ in the xy-plane.
- 7. Let ψ be the angle between a vector in \mathbb{R}^3 and the z-axis. Find the volume of the region in \mathbb{R}^3 bounded by the surface given in spherical polar coordinates by $r = 3(1 \cos \psi)$.
- 8. Let $S = \partial B$ be the closed surface that is the boundary of the hemisphere

$$B: x^2 + y^2 + z^2 \le 1, z \ge 0.$$

Thus S is the union of the flat unit disc S_1 in the xy-plane given as

$$S_1: x^2 + y^2 \le 1, z = 0$$

and the curved surface S_2 given as

$$S_2: x^2 + y^2 + z^2 = 1, z \ge 0.$$

Suppose that S is oriented with normal vector pointing out from the hemisphere at each point, and let S_1 and S_2 have this same orientation. Let F be the vector field $F(x, y, z) = (x + \cos y + \cos z, y + \sqrt{x^2 + 1} \ln(z^2 + 1), z + 3)$.

- (a) (4) Compute $\int_S \tilde{F} \cdot dS$.
- (b) (4) Compute $\int_{S_1} F \cdot dS$.
- (c) (4) Compute $\int_{S_2} F \cdot dS$.
- 9. Calculate

$$\int_{\gamma} (y - \tan^{-1} \sqrt{x + 10}) dx + (3x + e^{y^2} \sin y) dy$$

where γ is the boundary of the region enclosed by the parabola $y=x^2$ and the line y=4.

- 10. Let C be the curve in \mathbb{R}^2 parametrized by $\gamma(t) = \begin{pmatrix} t t^2 \\ t t^3 \end{pmatrix}$ where $0 \le t \le 1$, taken with the orientation given by this parametrization. You may assume that this curve is a loop which does not cross itself, and that it is in fact the boundary of a 2-manifold with boundary, namely the region enclosed by C.
 - (a) Calculate $\int_C y \, dx$.
 - (b) By expressing the integral in (a) as a double integral (using Green's theorem), calculate the area of the region enclosed by C.
- 11. For each of the following sets, determine whether or not it is a smooth manifold, justifying your conclusion.
 - (1) The set of 2×2 real matrices A such that $A^2 = I$.
 - (2) The set of points $\binom{x}{y}$ in \mathbb{R}^2 for which x and y have the same sign, or are both zero.
 - $(3) \{x \in \mathbb{R} \mid x > 0\}$
 - (4) $\mathbb{R} \{0\}$
 - (5) The union of the coordinate axes x = 0 and y = 0 in \mathbb{R}^2 .
- 12. Find the maximum and minimum values of $f(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = x^2 + xy + 2y^2 z^2$ on the ball $x^2 + y^2 + z^2 \le 100$.

Plus: the questions which have appeared on the previous practice handouts, and

Section 2.10: 2, 4, 7, 8, 14, 15, 16

Section 2.11: 26, 32, 33.

Section 3.7: no 6 Take this function and find its maximum and minimum values on $x^2 + y^2 + z^2 \le 10$. Also questions 7, 8, 11, 12, 13.

Section 3.10: 3.1, 3.2, 3.5, 3.10, 3.20

Section 4.1: 10, 14

Section 4.5: 7, 8, 11, 12, 14, 15, 16, 18.

Section 4.8: 1, 2, 13.

Section 4.10: 8, 12, 13, 14, 17, 18, 19.

Section 4.12: 4.11, 4.12, 4.13, 4.21, 4.23.

Section 5.1: 1, 2

Section 5.3: 2, 3, 6, 8, 9, 15, 18, 21.

Section 5.6: 3, 4.