Math 3593 Practice for the final exam.

The final exam is 12:00-3:00 pm Monday, May 7, 2018 in Vincent 211. You will not be allowed to use books, notes or a calculator on this exam. At the top of the exam you will be given the following formulas:
Formulas Surface area of a sphere: $4 \pi r^{2}$. Volume of a sphere: $\frac{4}{3} \pi r^{3}$.
Polar coordinates: $x=r \cos \theta, y=r \sin \theta ; d x d y=r d r d \theta$.
Cylindrical coordinates: $x=r \cos \theta, y=r \sin \theta, z=z ; d x d y d z=r d r d \theta d z$.
Spherical polars: $x=r \cos \phi \cos \theta, y=r \cos \phi \sin \theta, z=r \sin \phi ; d x d y d z=r^{2} \cos \phi d r d \phi d \theta$.
The first seven (at least) of the following questions you have seen recently. I leave them there just to remind you. Be sure to look also at the review sheets for the other exams.

1. Prove that a subset of a set of volume zero has volume zero.
2. Find the surface area of the part of the graph of the function $z=y^{2}-x^{2}$ which lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
3. Let A be the unit circle $x^{2}+y^{2} \leq 1$ and let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by $\Phi\binom{x}{y}=\binom{2 x+y}{x-y}$. Find the area of $\Phi(A)$.
4. Find the length of the part of the helical spiral in \mathbb{R}^{3}, specified in cylindrical polar coordinates (r, θ, z) by $r=2, z=3 \theta$, for which $0 \leq \theta \leq 2 \pi$.
5. Find the area of the plane elliptical region which is the part of the plane $z=4-x-2 y$ that lies above the circle $x^{2}+y^{2} \leq 1$ in the $x y$-plane.
6. Let ψ be the angle between a vector in \mathbb{R}^{3} and the z-axis. Find the volume of the region in \mathbb{R}^{3} bounded by the surface given in spherical polar coordinates by $r=3(1-\cos \psi)$.
7. Let $S=\partial B$ be the closed surface that is the boundary of the hemisphere

$$
B: \quad x^{2}+y^{2}+z^{2} \leq 1, \quad z \geq 0 .
$$

Thus S is the union of the flat unit disc S_{1} in the $x y$-plane given as

$$
S_{1}: \quad x^{2}+y^{2} \leq 1, \quad z=0
$$

and the curved surface S_{2} given as

$$
S_{2}: \quad x^{2}+y^{2}+z^{2}=1, \quad z \geq 0 .
$$

Suppose that S is oriented with normal vector pointing out from the hemisphere at each point, and let S_{1} and S_{2} have this same orientation. Let F be the vector field $F(x, y, z)=\left(x+\cos y+\cos z, y+\sqrt{x^{2}+1} \ln \left(z^{2}+1\right), z+3\right)$.
(a) (4) Compute $\int_{S} F \cdot d S$.
(b) (4) Compute $\int_{S_{1}} F \cdot d S$.
(c) (4) Compute $\int_{S_{2}} F \cdot d S$.
9. Calculate

$$
\int_{\gamma}\left(y-\tan ^{-1} \sqrt{x+10}\right) d x+\left(3 x+e^{y^{2}} \sin y\right) d y
$$

where γ is the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=4$.
10. Let C be the curve in \mathbb{R}^{2} parametrized by $\gamma(t)=\binom{t-t^{2}}{t-t^{3}}$ where $0 \leq t \leq 1$, taken with the orientation given by this parametrization. You may assume that this curve is a loop which does not cross itself, and that it is in fact the boundary of a 2-manifold with boundary, namely the region enclosed by C.
(a) Calculate $\int_{C} y d x$.
(b) By expressing the integral in (a) as a double integral (using Green's theorem), calculate the area of the region enclosed by C.
11. For each of the following sets, determine whether or not it is a smooth manifold, justifying your conclusion.
(1) The set of 2×2 real matrices A such that $A^{2}=I$.
(2) The set of points $\binom{x}{y}$ in \mathbb{R}^{2} for which x and y have the same sign, or are both zero.
(3) $\{x \in \mathbb{R} \mid x>0\}$
(4) $\mathbb{R}-\{0\}$
(5) The union of the coordinate axes $x=0$ and $y=0$ in \mathbb{R}^{2}.
12. Find the maximum and minimum values of $f\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=x^{2}+x y+2 y^{2}-z^{2}$ on the ball $x^{2}+y^{2}+z^{2} \leq 100$.

Plus: the questions which have appeared on the previous practice handouts, and
Section 2.10: 2, 4, 7, 8, 14, 15, 16
Section 2.11: 26, 32, 33.
Section 3.7: no 6 Take this function and find its maximum and minimum values on $x^{2}+$ $y^{2}+z^{2} \leq 10$. Also questions $7,8,11,12,13$.
Section 3.10: 3.1, 3.2, 3.5, 3.10, 3.20
Section 4.1: 10, 14
Section 4.5: 7, 8, 11, 12, 14, 15, 16, 18.
Section 4.8: 1, 2, 13.
Section 4.10: 8, 12, 13, 14, 17, 18, 19.
Section 4.12: 4.11, 4.12, 4.13, 4.21, 4.23.
Section 5.1: 1, 2
Section 5.3: 2, 3, 6, 8, 9, 15, 18, 21.
Section 5.6: 3, 4.

