Math 8246 Homework 2 Date due: Monday February 21, 2011

1. Suppose that we have two commutative diagrams of group homomorphisms

 $1 \rightarrow L \xrightarrow{\gamma} J \rightarrow G \rightarrow 1$ $\downarrow_{\theta} \qquad \qquad \downarrow_{\phi_i} \qquad \downarrow_{1_G}$ $1 \rightarrow M \xrightarrow{\alpha_i} E_i \rightarrow G \rightarrow 1$

where i = 1, 2, the maps labeled without the suffix i are the same in both diagrams, L and M are abelian and the two rows are group extensions (i.e. short exact sequences of groups). Assume that the two module actions of G on M given by conjugation within E_1 and E_2 are the same. Show that the two bottom extensions are equivalent. [Hint: one way to proceed is to show that they are both equivalent to a third extension which you construct.]

- 2. Show that the two extensions $\mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z} \xrightarrow{\mu'} \mathbb{Z} \xrightarrow{\epsilon'} \mathbb{Z}/3\mathbb{Z}$ are not equivalent, where $\mu = \mu'$ is multiplication by 3, $\epsilon(1) \equiv 1 \pmod{3}$ and $\epsilon'(1) \equiv 2 \pmod{3}$.
- 3. (D&F 17.1, 8) Prove that if $0 \to L \to M \to N \to 0$ is a split short exact sequence of *R*-modules, then for every $n \ge 0$ the sequence $0 \to \operatorname{Ext}_R^n(N, D) \to \operatorname{Ext}_R^n(M, D) \to \operatorname{Ext}_R^n(L, D) \to 0$ is also short exact and split. [Use a splitting homomorphism and Proposition 5, which says that Ext is functorial in each variable.]
- 4. (D&F 17.1, 19) Suppose $r \neq 0$ is not a zero divisor in the commutative ring R.
 - (a) Prove that multiplication by r gives a free resolution $0 \to R \xrightarrow{r} R \to R/rR \to 0$ of the quotient R/rR.
 - (b) DO NOT ATTEMPT THIS PART. WE DID IT IN CLASS MORE-OR-LESS. Prove that $\operatorname{Ext}_{R}^{0}(R/rR, B) = {}_{r}B$ is the set of elements $b \in B$ with rb = 0, that $\operatorname{Ext}_{r}^{1}(R/rR, B) \cong B/rB$, and that $\operatorname{Ext}_{r}^{n}(R/rR, B) = 0$ for $n \geq 2$ for evry R-module b.
 - (c) Prove that $\operatorname{Tor}_0^R(A, R/rR) = A/rA$, that $\operatorname{Tor}_1^R(A, R/rR) = {}_rA$ is the set of elements $a \in A$ with ra = 0, and that $\operatorname{Tor}_n^R(A, R/rR) = 0$ for $n \ge 2$ for every R-module A.
- 5. If N is a right $\mathbb{Z}G$ -module and M is a left $\mathbb{Z}G$ -module we may make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = ng^{-1} \otimes gm$, extended linearly to the whole of $N \otimes_{\mathbb{Z}} M$. Show that $N \otimes_{\mathbb{Z}G} M \cong (N \otimes_{\mathbb{Z}} M)_G$. [Not part of the question just information: if N and M are two left modules we make

[Not part of the question, just information: if N and M are two left modules we make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = gn \otimes gm$. This is called the *diagonal action* on the tensor product.]

6. (a) Let M and N be $\mathbb{Z}G$ -modules and suppose that N has the trivial G-action. Show that $\operatorname{Hom}_{\mathbb{Z}G}(M, N) \cong \operatorname{Hom}_{\mathbb{Z}G}(M/(IG \cdot M), N)$.

(b) Show that for all groups G, $\operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z}, IG) = 0$; and that if we suppose that G is finite then $\operatorname{Hom}_{\mathbb{Z}G}(IG, \mathbb{Z}) = 0$.

(c) By applying the functor $\operatorname{Hom}_{\mathbb{Z}G}(IG, \)$ to the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$ show that for all finite groups G, if $f: IG \to \mathbb{Z}G$ is any $\mathbb{Z}G$ -module homomorphism then $f(IG) \subseteq IG$.

(d) Show that if G is finite and $d: G \to \mathbb{Z}G$ is any derivation then $d(G) \subseteq IG$. Is the same true for arbitrary groups G?

7. Let G be a finite group. Show that the endomorphism ring $\operatorname{Hom}_{\mathbb{Z}G}(IG, IG)$ is isomorphic to $\mathbb{Z}G/(N)$ where $N = \sum_{g \in G} g$ is the norm element which generates $(N) = (\mathbb{Z}G)^G$.

[You may assume that every $\mathbb{Z}G$ -module homomorphism $IG \to \mathbb{Z}G$ has image contained in IG. Apply the functor $\operatorname{Hom}_{\mathbb{Z}G}(-,\mathbb{Z}G)$ to the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$. You may assume for a finite group G that $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) = 0$.]

- 8. Show that for every group G:
 - (a) all derivations $d: G \to M$ satisfy d(1) = 0, and
 - (b) the mapping $d: G \to \mathbb{Z}G$ given by d(g) = g 1 is a derivation.
- 9. (a) Show that the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$ is split as a sequence of $\mathbb{Z}G$ -modules if and only if G = 1. Deduce that the identity group is the only group of cohomological dimension 0.
 - (b) Show that if G is a free group then $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) \neq 0$.
- 10. Let V and W be vector spaces over \mathbb{R} . Given vector space endomorphisms $\alpha : V \to V$ and $\beta : W \to W$ we may make V and W into $\mathbb{R}[X]$ -modules by defining $X \cdot v = \alpha(v)$, $X \cdot w = \beta(w)$ for $v \in V$ and $w \in W$. In each of the following cases where we specify α, β by means of matrices with respect to some bases, compute $\dim_{\mathbb{R}} \operatorname{Ext}^{1}_{\mathbb{R}[X]}(V, W)$.

(i)
$$\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $\beta = (1)$
(ii) $\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\beta = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
(iii) $\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\beta = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$
(iv) $\alpha = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

In case (i) above, exhibit a non-split extension of V by W (i.e. a non-split short exact sequence $0 \to W \to M \to V \to 0$ of $\mathbb{R}[X]$ -modules).

11. (i) Suppose that A, B, and C are R-modules and that there are homomorphisms

$$A \xrightarrow[\delta]{\alpha} B \xrightarrow[\gamma]{\beta} C$$

such that $\beta \alpha = 0$ and such that the identity map on B can be written $1_B = \alpha \delta + \gamma \beta$. Show that $\beta = \beta \gamma \beta$. Suppose in addition to all this that $\alpha = \alpha \delta \alpha$. Show that $B \cong \alpha \delta(B) \oplus \gamma \beta(B)$. (ii) A chain complex C of R-modules is called *contractible* if it is chain homotopy equivalent (by R-module homomorphisms) to the zero chain complex. Prove that C

equivalent (by *R*-module homomorphisms) to the zero chain complex. Prove that C is contractible if and only if C can be written as a direct sum of chain complexes of the form $\cdots \to 0 \to A \xrightarrow{\alpha} B \to 0 \cdots$ where α is an isomorphism.

Extra questions: do not hand in!

12. (D&F 17.1, 12) Prove that $\operatorname{Tor}_0^R(D, A) \cong D \otimes_R A$.

Given a homomorphism of chain complexes of *R*-modules $\phi : \mathcal{C} \to \mathcal{D}$ we may define $E_n = C_{n-1} \oplus D_n$, and a mapping $e_n : E_n \to E_{n-1}$ by $e_n(a, b) = (-\partial a, \phi a + \partial b)$, where we denote the boundary maps on \mathcal{C} and \mathcal{D} by ∂ . The specification $\mathcal{E}(\phi) = \{E_n, e_n\}$ is called the mapping cone of ϕ .

- 13. Show that $\mathcal{E} = \{E_n, e_n\}$ is indeed a chain complex.
- 14. Show that there is a short exact sequence of chain complexes $0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{C}[1] \to 0$ where $\mathcal{C}[1]$ denotes the chain complex with the same *R*-modules and boundary maps as \mathcal{C} but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce that there is a long exact sequence

$$\cdots \to H_n(\mathcal{C}) \to H_n(\mathcal{D}) \to H_n(\mathcal{E}(\phi)) \to H_{n-1}(\mathcal{C}) \to \cdots$$

Show that $\mathcal{E}(\phi)$ is acyclic if and only if ϕ induces an isomorphism $H_n(\mathcal{C}) \to H_n(\mathcal{D})$ for every n.

- 15. Show that if $\phi \simeq \psi : \mathcal{C} \to \mathcal{D}$ then $\mathcal{E}(\phi) \cong \mathcal{E}(\psi)$.
- 16. Let $0 \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/16\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to 0$ be a short exact sequence.
 - (i) Construct its inverse under the group operation in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/4\mathbb{Z})$ with sufficient precision that you can determine by examination of the two sequences whether or not they are equivalent.
 - (ii) Determine the isomorphism type of middle term of the sum of the sequence with itself. [By 'the sum' is meant the addition in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/4\mathbb{Z})$.]
- 17. Let $G = \langle g \rangle$ be an infinite cyclic group. Consider an extension of $\mathbb{Z}G$ -modules

$$0 \to \mathbb{Z} \xrightarrow{\iota_1} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\pi_2} \mathbb{Z} \to 0$$

' in which the maps are inclusion into the first summand and projection onto the second summand, and where g acts on $\mathbb{Z} \oplus \mathbb{Z}$ as the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with respect to the

basis given by this direct sum decomposition. In the identification $\operatorname{Ext}_{\mathbb{Z}G}^1(\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z}$, determine the Ext class of this extension, and conclude that the extension is not split. Find a description of an extension represented by $5 \in \operatorname{Ext}_{\mathbb{Z}G}^1(\mathbb{Z},\mathbb{Z})$.

18. Let $0 \to \mathbb{Z} \to E \to \mathbb{Z}/n\mathbb{Z} \to 0$ be an extension of abelian groups represented by $r + n\mathbb{Z} \in \operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$ under the identification of $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$ with $\mathbb{Z}/n\mathbb{Z}$, where $r \in \mathbb{Z}$. Show that $E \cong \mathbb{Z} \oplus \mathbb{Z}/d\mathbb{Z}$ where $d = h.c.f.\{r, n\}$ and identify the morphisms $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ in this extension, giving their components with respect to this direct sum decomposition of E.