Math 8212 Commutative and Homological Algebra 2 Spring 2022

Homework Assignment 2 - Solutions Due Saturday 3/5/2022, uploaded to Grade-
scope.

Each question part is worth 1 point. There are 12 question parts. Assume that all cate-
gories are small. We define Fun(C, D) to be the category whose objects are functors C — D
and whose morphisms are natural transformations.

1. Suppose that F': C — D is an equivalence of categories.

(a) Show that, for all objects =,y € ObC, the functor F provides a bijection
HomC(mvy) AN HomD(F(x),F(y)),

that preserves composition, so that End¢(x) = Endp(F'(x)) as monoids.

(b) Show that z = y in C if and only if F(z) = F(y) in D, so that F' provides a bijection
between the isomorphism classes of C, and of D.

(c) Let € be a further category. Show that the functor categories Fun(C, ) and Fun(D, &)
are naturally equivalent.

Solution. (a) For each morphism a : x — y in C there is a morphism F(«) : F(z) — F(y),
so F' provides a mapping Home(z,y) <+ Homp(F(z), F(y)), and this mapping preserves
composition. Because F'is an equivalence, there is another functor G : D — C with natural
isomorphisms 6 : FG — 1p and n : GF' — 1¢. This means that for each o : © — y in
C we have a = n,(GF(a))n, ' which shows that o — F(«) is one-to-one. Similarly the
existence of § shows that o — F'(a) is onto. Thus we have a bijection as claimed.

(b) If x = y in C there are morphisms o : x — y and 8 : y — z so that Sa = 1, and
af = 1,. Applying F' these equations we get F(5)F (o) = 1p(y) and F(a)F(8) = 1p(y,)
so F(z) = F(y). Conversely, using the functor G from part (a), if F(z) = F(y) then
GF(x) =2 GF(y) by the argument already used. Now 7, : GF(z) — z is an isomorphism
for all z, so x = GF(x) = GF(y) = v.

(c) With the previous notation, we get functors F* : Fun(D,€) — Fun(C,€&) and G* :
Fun(C, ) — Fun(D, £) given by precomposition with F' and with G, so that if & : D — &£
is a functor then F*(®) = ®o F and similarly if ¥ : C — £ is a functor then G*(¥) = Vod.
We get a natural transformation n* : F*G* = (GF)* — lpun(c,e) given at a functor ¥
by 05 : (GF)*(¥) = WGF — VU where n}(z) = ¥(n,). This is a natural isomorphism
with inverse given by a similar construction applied to the inverse of 7. Also by a similar
construction we get a natural isomorphism 6* : G*F™* = (FG)* — lpun(p,s) given at a
functor ® : D — & by 0}(z) = ®(0,). This shows that the functor categories are naturally
equivalent.

2. Let C be a category and let z,y € ObC. Prove that if z = y then Home(z, —) and
Hom¢ (y, —) are naturally isomorphic functors C — Set.



Solution. Let a: x — y and S : y — x be inverse isomorphisms. For each object z in C we
have mappings o} : Hom¢(y, z) — Home(x, 2) and 87 : Home(z, 2) — Home(y, 2) given
by ai(f) = fa and 5%(g) = g8 . Now o* and §* are natural transformations because if
u:z — w then u,af(f) = ufa = o (u (f)), and similarly with *. They are inverse to
each other because, for each z, we have 8o’ = lgome(y,2) and o8] = lHome (x,2)-

3. Let F,G : C — D be functors and n : F — G a natural transformation.

(a) Show that if, for all x € ObC, the mapping 1, : F(x) — G(z) is an isomorphism
in D, then 7 is a natural isomorphism (meaning that it has a 2-sided inverse natural
transformation 0 : G — F).

(b) Suppose that F is an equivalence of categories and that F' is naturally isomorphic to
G, so F' ~ (G. Show that GG is an equivalence of categories.

Solution. (a) If 7, is an isomorphism for all z we may define mappings 0, := 1, '. These
0, define a natural transformation 6 : G — F because we know that for all morphisms
o : z — y we have G(a)n, = n,F(a), so that 0,G(a) = n, ' G(a)n.n, ' = n, 'ny, Fla)n, ' =
F(a)f,. 1t is inverse to .

(b) We will use the fact that if F} : D — £ is another functor and F' ~ G then F} F ~ F;G.
This is because the natural transformation n : ' — G provides a natural transformation
Fin: i F — F1G where, for each object x of C, we have (Fin), = Fi(n,) : FiF(x) —
F1G(x). If each 7, is an isomorphism, so is (F17),, because functors take isomorphisms
to isomorphisms. We will take F; : D — C to be an inverse equivalence to F', so that
WF~1¢c and FF} ~ 1p. Now F1G ~ I F ~ 1¢, and similarly GF} ~ FF; ~ 1p. Finally
we show that equivalence ~ is transitive. Suppose we have natural equivalences n : ' — G
and 0 : G — H. Then 0n : F' — H is a natural transformation, where (07), := 6,71, and
if both 6, and 7, are isomorphisms, so is (6n),. It follows that F1G ~ 1¢ and GF; ~ 1p
so that F] is a natural inverse of G.

4. Let G be a group, which we regard as a category G with a single object, and with the
elements of G as morphisms. Let F': G — G be a functor.

(a) Show that F' is naturally isomorphic to the identity functor 1g : G — G if and only if
the mapping F' : G — G, induced by F' on the set of morphisms, is an inner automorphism;
that is, an automorphism of the form ¢, : G — G for some g € G, where c,(h) = ghg™*

for all h € G.
(b) Show that self equivalences of G are automorphisms of G.

(c) Show that the group of natural isomorphism classes of self equivalences of G is iso-
morphic to Aut(G)/Inn(G). (In the context of group theory, Inn(G) denotes the set of
inner automorphisms of GG, and Out(G) := Aut(G)/ Inn(G) is called the group of outer (or
non-inner) automorphisms.)



Solution. (a) Writing the object of G as x, there is a natural isomorphism 6 : F' ~ 1 if
and only if there is an isomorphism 6, in G so that, for all morphisms « in G the following
diagram commutes:

F
. (@)
O
(e
¥  — %

The morphisms 6., o and F'(«) are all elements of G, and F' is a homomorphism G — G.
The diagram means that F' is ¢, where g = 0,.

(b) If F is a self equivalence of G then F(x) = x because G has only one object, and F' is
an isomorphism on the morphisms of G by exercise 1(a).

(c) Each automorphism F' of G provides a bijective map f of the morphisms of G to itself
preserving composition, so an automorphism f : G — G, and from part (b) we see that
the correspondence F' <« f is an isomorphism Aut(G) = Aut(G). We show that two
automorphisms Fi, Fs are equivalent if and only if the corresponding f1, f2 lie in the same
coset of Inn(G). Now F; ~ F, if and only if F; 'F} ~ 1g by an argument from question
3(b), which happens if and only if f, ' f; € Inn(G) by part (a) or, in other words, fi, f2
lie in the same coset of Inn(G).

5. Let I be the poset with two elements 0 and 1, and with 0 < 1. If P and @) are posets
we can regard them as categories P and Q whose objects are the elements of the posets,
and where there is a unique morphism z — y if and only if = < y.

(a) Show that if P and @ are posets then a functor P — Q is ‘the same thing as’ an
order-preserving map. (Don’t worry about any fancy interpretation of ‘the same thing
as’!)

(b) Now consider two functors F,G : P — Q, which we may regard as order-preserving
maps f,g: P — @ by part (a). Show that the following three conditions are equivalent:
(1) there exists a natural transformation F' — G,

(ii) f(z) < g(z) for all x € P,

(iii) there is an order-preserving map h : P x I — @ such that h(xz,0) = f(x) and
h(z,1) = g(z) for all z € P. Here P x I denotes the product poset with order relation
(a1,b1) < (ag,be2) if and only if a; < ag and by < by, where a; € P and b; € I.

Solution: (a) Let F': P — Q be a functor. If x < y in P we can regard this as a morphism
a:x — yin P, so that F(a) : F(x) — F(y) is a morphism in Q, and F(x) < F(y).
Thus F' is an order preserving map. Conversely, given an order preserving map f: P — @
we obtain a functor P — Q that on objects is the same as f, and where if z — y is a
morphism in P we define the effect of the functor to be the unique morphism f(x) — f(y),
which exists because f(z) < f(y).

(b) Suppose (i) Then for each object x of P there is a morphism 7, : F'(z) — G(z), so that
f(x) < g(z) for all z € P. Thus (ii) holds.



Assuming (ii) holds, we show that the mapping defined in (iii) is order preserving. Suppose
that (a1,b1) < (ag,bz) and apply h. If by = by then h(ai,b1) < h(asz,bs) because either
f or g is order preserving. The other possibility is by = 0 and b, = 1, in which case this
inequality holds because, in addition, f(z) < g(x) for all . Thus (iii) holds.

Assuming (iii) we define 7, to be the unique map f(x) — g(x), which exists because
f(z) = h(z,0) < h(x,1) = g(x). This shows that (i) holds.

6. Let 1g_mod : R-mod — R-mod denote the identity functor. Let Nat(1z—_mod, 1l R—mod)
denote the set of natural transformations from this functor to itself, noting that this set
has the structure of a ring (multiplication is composition and addition comes because we
can add homomorphisms of R-modules, so that for two natural transformations 6,1 at an
object x we have (0 + ¢), = 6, + 1,). Show that Nat(1r_mod, lrR—mod) = Z(R).

Solution. We define mappings
f : Nat(lR_mod, 1R—rnod) — R and g: Z(R) — Nat(lR_mod, 1R—rnod)

as follows. If n is such a natural transformation note that nr : R — R is an R-module
homomorphism. We put f(n) = nr(lg) € R. If r € Z(R) we define g(r) to be the
natural transformation with g(r)y : M — M the mapping m — rm. This is an R-module
homomorphism because r lies in the center of R, and ¢(r) is a natural transformation
because if & : M — M is a homomorphism of R-modules then g(r)ya(m) = ra(m) =
a(rm) = ag(r)am(m). We should verify several more things: f(n) lies in Z(R) and the
two composite mappings fg and gf are the identity. If x is any element of R we have
an R-module homomorphism p, : R — R where p,(s) = sz. Naturality of n means that
MRz = pzNr- Applying these to 1 € R we get nr(z) = nr(zl) = 2nr(1l) = nr(1)z,
showing f(n) lies in Z(R). It is immediate that fg is the identity on Z(R). Finally we
show that n = g(nr(1g)) to see this consider the commutative diagram of R-modules

R ™ R
L
M M

where the vertical arrows are determined by 1 +— m for some arbitrary element m € M.
Commutativity shows that ny(m) = nr(1g)m, which is what is needed.

Extra question: do not upload to Gradescope.

7. Let C be a small category and let F,G : C — Set be functors. Show that a natural
transformation of functors 7 : F' — G is an epimorphism in Fun(C, Set) if and only if for
every object z of C, 7, : F(x) — G(x) is a surjection; and it is a monomorphism if and
only if for every object x of C, 7, : F(x) — G(x) is a 1-1 map.



8. Write out a proof that if GG is the right adjoint of a functor F' with the property that F
preserves monomorphisms, then G sends injective objects to injective objects.

9. Let F': C — D and G : D — C be functors with F' left adjoint to G, and with adjunction
unit 7 and counit €. Write out a proof that the second triangular identity holds, namely
the following triangle commutes:

G ELN G
¢ N
na Ge
GFG

10. Assume the axiom of choice in this question, or else make some assumption such as:
everything is finite. Let C be a category, and for each isomorphism class & of objects z,
choose a fixed representative uz;. For each object & choose a fixed isomorphism i, : * — uz.
Let D be the full subcategory whose objects are the uz; where x € ObC. ‘Full’ means that
for each pair of objects y, z of D we have Homp(y, z) = Home(y, 2). Define F(x) = &, and

for each morphism «a : z — y define F(a) : F(z) — F(y) to be iyai; !

(a) Show that F' is a functor.

(b) Show that F and the inclusion functor inc : D — C are inverse equivalences of categories
D ~ C. (It will help to assume that when x = uz, the chosen isomorphism is the identity
1

8

(¢) Deduce that the category Set of finite sets is equivalent to the category with objects
N := {0,1,2,...} and where Hom(n,m) is the set of all mappings of sets from n :=
{1,...,n} tom:={1,...,m}. We take 0 = 0.

(d) Deduce also the following: let K be a field. Show that the category Vec of finite
dimensional vectors spaces over K is equivalent to the category C with objects N :=
{0,1,2,...}, where Hom¢(n,m) is the set My, ,,(K) of m x n matrices with entries in K,
and where composition of morphisms is matrix multiplication. In case m or n is zero, give
a definition of Home(n, m) that will make this question make sense.

11. Let C be a small category. A self-equivalence of C is an equivalence of categories
F :C — C. Show that the set of natural isomorphism classes of self equivalences of C is a
group, with multiplication induced by composition of functors.



